Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yibo Ma is active.

Publication


Featured researches published by Yibo Ma.


Textile Research Journal | 2016

Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell:

Anne Michud; Marjaana Tanttu; Shirin Asaadi; Yibo Ma; Eveliina Netti; Pirjo Kääriäinen; Anders Persson; Anders Berntsson; Michael Hummel; Herbert Sixta

Ioncell-F, a recently developed process for the production of man-made cellulosic fibers from ionic liquid solutions by dry-jet wet spinning, is presented as an alternative to the viscose and N-methylmorpholine N-oxide (NMMO)-based Lyocell processes. The ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate was identified as excellent cellulose solvent allowing for a rapid dissolution at moderate temperatures and subsequent shaping into continuous filaments. The highly oriented cellulose fibers obtained upon coagulation in cold water exhibited superior tenacity, exceeding that of commercial viscose and NMMO-based Lyocell (Tencel®) fibers. The respective staple fibers, which have been converted into two-ply yarn by ring spinning technology, presented very high tenacity. Furthermore, the Ioncell yarn showed very good behavior during the knitting and weaving processes, reflecting the quality of the produced yarn. The successfully knitted and woven garments from the Ioncell yarn demonstrate the suitability of this particular ionic liquid for the production of man-made cellulosic fibers and thus give a promising outlook for the future of the Ioncell-F process.


RSC Advances | 2013

Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: autohydrolysis pretreatment

Lauri K. J. Hauru; Yibo Ma; Michael Hummel; Marina Alekhina; Alistair W. T. King; Ilkka Kilpeläinen; Paavo A. Penttilä; Ritva Serimaa; Herbert Sixta

Ionic liquid-cosolvent systems have been proposed as selective solvent media for lignocellulosic materials. We present the ionic liquid-aided fractionation of silver birch (Betula pendula) combined with an autohydrolysis pretreatment. Contrary to untreated birchwood meal, autohydrolyzed birchwood meal reveals quantitative dissolution in 1-ethyl-3-methylimidazolium acetate and distinct separation into the individual wood polymers upon regeneration in acetone/water. The process yields two main fractions, a cellulose-rich precipitate with a residual lignin content of 13–15% and another virtually pure lignin fraction. No cellulose yield loss is observed during the ionic liquid processing step. A comprehensive mass balance of the process, including insoluble material, wash waters, and soluble residues, is provided. The product fractions are characterised for their chemical compositions, molar mass distributions and structural characteristics by Klason lignin and sugar analysis, 13C NMR, GPC and WAXS. The study investigates the effects of wood particle size and autohydrolysis intensity on fractionation efficiency and selectivity.


Chemsuschem | 2015

High‐Strength Composite Fibers from Cellulose–Lignin Blends Regenerated from Ionic Liquid Solution

Yibo Ma; Shirin Asaadi; Leena-Sisko Johansson; Patrik Ahvenainen; Mehedi Reza; Marina Alekhina; Lauri Rautkari; Anne Michud; Lauri K. J. Hauru; Michael Hummel; Herbert Sixta

Composite fibres that contain cellulose and lignin were produced from ionic liquid solutions by dry-jet wet spinning. Eucalyptus dissolving pulp and organosolv/kraft lignin blends in different ratios were dissolved in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate to prepare a spinning dope from which composite fibres were spun successfully. The composite fibres had a high strength with slightly decreasing values for fibres with an increasing share of lignin, which is because of the reduction in crystallinity. The total orientation of composite fibres and SEM images show morphological changes caused by the presence of lignin. The hydrophobic contribution of lignin reduced the vapour adsorption in the fibre. Thermogravimetric analysis curves of the composite fibres reveal the positive effect of the lignin on the carbonisation yield. Finally, the composite fibre was found to be a potential raw material for textile manufacturing and as a precursor for carbon fibre production.


Advances in Polymer Science | 2015

Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges

Michael Hummel; Anne Michud; Marjaana Tanttu; Shirin Asaadi; Yibo Ma; Lauri K. J. Hauru; Arno Parviainen; Alistair W. T. King; Ilkka Kilpeläinen; Herbert Sixta

The constant worldwide increase in consumption of goods will also affect the textile market. The demand for cellulosic textile fibers is predicted to increase at such a rate that by 2030 there will be a considerable shortage, estimated at ~15 million tons annually. Currently, man-made cellulosic fibers are produced commercially via the viscose and Lyocell™ processes. Ionic liquids (ILs) have been proposed as alternative solvents to circumvent certain problems associated with these existing processes. We first provide a comprehensive review of the progress in fiber spinning based on ILs over the last decade. A summary of the reports on the preparation of pure cellulosic and composite fibers is complemented by an overview of the rheological characteristics and thermal degradation of cellulose–IL solutions. In the second part, we present a non-imidazolium-based ionic liquid, 1,5-diazabicyclo[4.3.0]non-5-enium acetate, as an excellent solvent for cellulose fiber spinning. The use of moderate process temperatures in this process avoids the otherwise extensive cellulose degradation. The structural and morphological properties of the spun fibers are described, as determined by WAXS, birefringence, and SEM measurements. Mechanical properties are also reported. Further, the suitability of the spun fibers to produce yarns for various textile applications is discussed.


Green Chemistry | 2016

Upcycling of waste paper and cardboard to textiles

Yibo Ma; Michael Hummel; Marjo Määttänen; A. Särkilahti; Ali Harlin; Herbert Sixta

In continuation of previously reported results, the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene-1-ium acetate was also found to be a powerful non-derivatizing solvent for cellulosic waste such as paper and cardboard. The ionic liquid could dissolve all the present bio-polymers (cellulose, hemicellulose, and lignin) in high concentrations, resulting in solutions with visco-elastic properties that were suitable for dry-jet wet fiber spinning. The cellulosic raw materials were refined gradually to identify the influence of residual components on the spinnability of the respective solution. Polymer degradation and losses in the spinning process could be avoided nearly entirely. With the exception of virtually unrefined cardboard, all the samples showed excellent spinnability, resulting in fibers with high tensile strength. Prototype textiles were produced to validate the quality of the fibers and demonstrate the possibility of using residual lignin in cardboard as a natural dye.


Chemsuschem | 2016

Renewable High‐Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid

Shirin Asaadi; Michael Hummel; Sanna Hellsten; Tiina Härkäsalmi; Yibo Ma; Anne Michud; Herbert Sixta

A new chemical recycling method for waste cotton is presented that allows the production of virgin textile fibers of substantially higher quality than that from the mechanical recycling methods that are used currently. Cotton postconsumer textile wastes were solubilized fully in the cellulose-dissolving ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to be processed into continuous filaments. As a result of the heterogeneous raw material that had a different molar mass distribution and degree of polymerization, pretreatment to adjust the cellulose degree of polymerization by acid hydrolysis, enzyme hydrolysis, or blending the waste cotton with birch prehydrolyzed kraft pulp was necessary to ensure spinnability. The physical properties of the spun fibers and the effect of the processing parameters on the ultrastructural changes of the fibers were measured. Fibers with a tenacity (tensile strength) of up to 58 cN tex-1 (870 MPa) were prepared, which exceeds that of native cotton and commercial man-made cellulosic fibers.


Carbohydrate Polymers | 2018

Filament spinning of unbleached birch kraft pulps: Effect of pulping intensity on the processability and the fiber properties

Yibo Ma; Jonas Stubb; Inkeri Kontro; Kaarlo Nieminen; Michael Hummel; Herbert Sixta

Man-made lignocellulosic fibres were successfully prepared from unbleached birch kraft pulps by using the Ioncell-F technology. Pulps with different lignin content were produced by tailored kraft pulping with varying intensity. The degree of polymerization of the pulps was adjusted by acid-catalyzed hydrolysis and electron beam treatment. All substrates were completely soluble in 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) and the respective solutions were spinnable to yield fibres with good to excellent mechanical properties despite the use of only mildly refined wood pulp. The tensile properties decreased gradually as the lignin concentration in the fibres increased. Changes in the chemical composition also affected the structure and morphology of the fibres. Both the molecular orientation and the crystallinity decreased while the presence of lignin enhanced the water accessibility. The effects of the crystallite size and lignin content on monolayer water adsorption are discussed.


Green Chemistry | 2018

High performance man-made cellulosic fibres from recycled newsprint

Yibo Ma; Michael Hummel; Inkeri Kontro; Herbert Sixta

Herein, we propose a biorefinery concept for the production of man-made cellulosic fibres from waste newsprint using environmentally friendly technologies. Newsprint represents one of the most challenging ligno-cellulose substrates as it comprises mostly virtually unrefined wood pulp. Spinning dopes were prepared with pulps obtained through kraft pulping and alkaline glycerol pulping at varying intensities. The solubility of kraft deinked newsprint pulps in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) was not promising and resulted in solutions of poor spinnability. In contrast, dopes prepared from alkaline glycerol pulping showed promising visco-elastic properties and the spun fibres possessed high tensile properties that are comparable to commercial Lyocell fibres made from highly refined dissolving pulp. The structural features of these fibres in terms of degree of orientation, crystallinity and the moisture sorption behaviour were analyzed and are discussed.


Cellulose | 2018

Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production

Nolene Byrne; Rasike De Silva; Yibo Ma; Herbert Sixta; Michael Hummel

Herein we investigate the stabilization behavior of a cellulose-lignin composite fibre towards application as a new bio derived precursor for carbon fibres. Carbon fibre materials are in high demand as we move towards a lower emission high-efficiency society. However, the most prominent current carbon fibre precursor is an expensive fossil-based polymer. Over the past decade significant research has focused on using renewable and bio derived alternatives. By blending cellulose and lignin and spinning a fibre with a continuous bi-component matrix a new approach to overcome the current limitations of both these precursors is proposed. A thorough study is conducted here on understanding the stabilization of the new precursors which is a critical step in the carbon fibre process. We show that stabilization times of the composite fibre are significantly reduced in comparison to pure lignin and improvements in mass yield compared to pure cellulose fibres are observed.


Cellulose | 2015

Assembly of metal nanoparticles on regenerated fibers from wood sawdust and de-inked pulp: flexible substrates for surface enhanced Raman scattering (SERS) applications

Xian-Ming Kong; Mehedi Reza; Yibo Ma; Juan-P. Hinestroza; Esko Ahvenniemi; Tapani Vuorinen

Collaboration


Dive into the Yibo Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Borrega Sabate

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge