Yigal Meir
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yigal Meir.
Physical Review Letters | 1993
Yigal Meir; Ned S. Wingreen; Patrick A. Lee
Abstract : The infinite-U Anderson model is applied to non-equilibrium transport through a quantum dot containing two spin levels weakly coupled to two leads. At low temperatures, the Kondo peak in the equilibrium density of states is split upon the application of a voltage bias. The split peaks, one at the chemical potential of each lead, are suppressed by non-equilibrium dissipation. In a magnetic field, the Kondo peaks shift away from the chemical potentials by the Zeeman energy, leading to an observable peak in the differential conductance when the non-equilibrium bias equals the Zeeman energy. Infinite-U Anderson model, Kondo peak, Zeeman energy, Low-temperature transport through a quantum dot, Kondo effect.
Physical Review Letters | 1998
W. Kohn; Yigal Meir; Dmitrii E. Makarov
In principle, density functional theory yields the correct ground-state densities and energies of electronic systems under the action of a static external potential. However, traditional approximations fail to include Van der Waals energies between separated systems. This paper proposes a practical procedure for remedying this difficulty. Our method allows seamless calculations between small and large inter-system distances. The asymptotic H-He and He--He interactions are calculated as a first illustration, with very accurate results.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Kerwyn Casey Huang; Yigal Meir; Ned S. Wingreen
In Escherichia coli, division site selection is regulated in part by the Min-protein system. Oscillations of the Min proteins from pole to pole every ≈40 sec have been revealed by in vivo studies of GFP fusions. The dynamic oscillatory structures produced by the Min proteins, including a ring of MinE protein, compact polar zones of MinD, and zebra-striped oscillations in filamentous cells, remain unexplained. We show that the Min oscillations, including mutant phenotypes, can be accounted for by in vitro-observed interactions involving MinD and MinE, with a crucial role played by the rate of nucleotide exchange. Recent discoveries suggest that protein oscillations may play a general role in proper chromosome and plasmid partitioning.
Physical Review B | 1994
Ned S. Wingreen; Yigal Meir
The infinite-U Anderson model is applied to transport through a quantum dot. The current and density of states are obtained via the non-crossing approximation for two spin-degenerate levels weakly coupled to two leads. At low temperatures, the Kondo peak in the equilibrium density of states strongly enhances the linear-response conductance. Application of a finite voltage bias reduces the conductance and splits the peak in the density of states. The split peaks, one at each chemical potential, are suppressed in amplitude by a finite dissipative lifetime. We estimate this lifetime perturbatively as the time to transfer an electron from the higher chemical potential lead to the lower chemical potential one. At zero magnetic field, the clearest signatures of the Kondo effect in transport through a quantum dot are the broadening, shift, and enhancement of the linear-response conductance peaks at low temperatures, and a peak in the nonlinear differential conductance around zero bias.
Nature | 2007
Yonatan Dubi; Yigal Meir; Yshai Avishai
The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-Tc) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor–insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor–insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of ‘the pseudogap phenomenon’ in underdoped high-Tc superconductors.
Physical Review Letters | 1999
Antoine Georges; Yigal Meir
The conductance through two quantum dots in series is studied using general qualitative arguments and quantitative slave-boson mean-field theory. It is demonstrated that measurements of the conductance can explore the phase diagram of the two-impurity Anderson model. Competition between the Kondo effect and the interdot magnetic exchange leads to a two-plateau structure in the conductance as a function to the gate voltage and a two or three peak structure in the conductance versus interdot tunneling. [S0031-9007(99)09017-1]
Physical Review Letters | 2002
Yigal Meir; Kenji Hirose; Ned S. Wingreen
Experiments on quantum point contacts have highlighted an anomalous conductance plateau around 0.7(2e(2)/h), with features suggestive of the Kondo effect. Here, an Anderson model for transport through a point contact analyzed in the Kondo limit. Hybridization to the band increases abruptly with energy but decreases with valence, so that the background conductance and the Kondo temperature T(K) are dominated by different valence transitions. This accounts for the high residual conductance above T(K). The model explains the observed gate-voltage, temperature, magnetic field, and bias-voltage dependences. A spin-polarized current is predicted even for low magnetic fields.
Cell | 2011
Olga Oleksiuk; Vladimir Jakovljevic; Nikita Vladimirov; Ricardo Carvalho; Eli Paster; William S. Ryu; Yigal Meir; Ned S. Wingreen; Markus Kollmann; Victor Sourjik
Temperature is a global factor that affects the performance of all intracellular networks. Robustness against temperature variations is thus expected to be an essential network property, particularly in organisms without inherent temperature control. Here, we combine experimental analyses with computational modeling to investigate thermal robustness of signaling in chemotaxis of Escherichia coli, a relatively simple and well-established model for systems biology. We show that steady-state and kinetic pathway parameters that are essential for chemotactic performance are indeed temperature-compensated in the entire physiological range. Thermal robustness of steady-state pathway output is ensured at several levels by mutual compensation of temperature effects on activities of individual pathway components. Moreover, the effect of temperature on adaptation kinetics is counterbalanced by preprogrammed temperature dependence of enzyme synthesis and stability to achieve nearly optimal performance at the growth temperature. Similar compensatory mechanisms are expected to ensure thermal robustness in other systems.
Molecular Systems Biology | 2008
Robert G. Endres; Olga Oleksiuk; Clinton H. Hansen; Yigal Meir; Victor Sourjik; Ned S. Wingreen
Like many sensory receptors, bacterial chemotaxis receptors form clusters. In bacteria, large‐scale clusters are subdivided into signaling teams that act as ‘antennas’ allowing detection of ligands with remarkable sensitivity. The range of sensitivity is greatly extended by adaptation of receptors to changes in concentrations through covalent modification. However, surprisingly little is known about the sizes of receptor signaling teams. Here, we combine measurements of the signaling response, obtained from in vivo fluorescence resonance energy transfer, with the statistical method of principal component analysis, to quantify the size of signaling teams within the framework of the previously successful Monod–Wyman–Changeux model. We find that size of signaling teams increases 2‐ to 3‐fold with receptor modification, indicating an additional, previously unrecognized level of adaptation of the chemotaxis network. This variation of signaling‐team size shows that receptor cooperativity is dynamic and likely optimized for sensing noisy ligand concentrations.
Nature | 2006
Tomaz Rejec; Yigal Meir
A quantum point contact (QPC) is a narrow constriction between two wider electron reservoirs, and is the standard building block of sub-micrometre devices such as quantum dots and qubits (the proposed basic elements of quantum computers). The conductance through a QPC changes as a function of its width in integer steps of G0 = 2e2/h (where e is the charge on an electron, and h is Plancks constant), signalling the quantization of its transverse modes. But measurements of these conductance steps also reveal an additional shoulder at a value around 0.7G0 (refs 1–4), an observation that has remained a puzzle for more than a decade. It has recently been suggested that this phenomenon can be explained by the existence of a magnetic ‘impurity’ in the QPC at low electron densities. Here we present extensive numerical density-functional calculations that reveal the formation of an electronic state with a spin-1/2 magnetic moment in the channel under very general conditions. In addition, we show that such an impurity will also form at large magnetic fields, for a specific value of the field, and sometimes even at the opening of the second transverse mode in the QPC. Beyond explaining the source of the ‘0.7 anomaly’, these results may have far-reaching implications for spin-filling of electronic states in quantum dots and for the dephasing of quantum information stored in semiconductor qubits.