Yiğit Kılıç
Gazi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yiğit Kılıç.
Drug Design Development and Therapy | 2016
Faruk Metin Çomu; Yiğit Kılıç; Abdullah Özer; Mehmet Kirişçi; Ali Doğan Dursun; Tolga Tatar; Mustafa Hakan Zor; Hakan Kartal; Ayşegül Küçük; Hakan Boyunağa; Mustafa Arslan
Background Ischemia reperfusion injury (I/R) in hind limb is a frequent and important clinical phenomenon. Many structural and functional damages are observed in cells and tissues in these kinds of injuries. In this study, we aimed to evaluate the effect of picroside II on lipid peroxidation and erythrocyte deformability during I/R in rats. Methods Rats were randomly divided into four groups – each containing six animals (sham, I/R, sham + picroside II, and I/R + picroside II). The infrarenal section of the abdominal aorta was occluded with an atraumatic microvascular clamp in I/R groups. The clamp was removed after 120 minutes and reperfusion was provided for a further 120 minutes. Picroside II (10 mg·kg−1) was administered intraperitoneally to the animals in the appropriate groups (sham + picroside II, I/R + picroside II groups). All rats were euthanized by intraperitoneal administration of ketamine (100 mg·kg−1) and taking blood from the abdominal aorta. Erythrocytes were extracted from heparinized complete blood samples. Buffer (PT) and then erythrocytes (PE) were passed through the filtration system and the changes in pressure were measured to investigate the role of serum malondialdehyde and nitric oxide (NO) in lipid peroxidation and erythrocyte deformability index. Results Deformability index was significantly increased in the I/R group compared to groups sham, sham + picroside-II, and I/R + picroside-II (P<0.0001, P<0.0001, and P=0.007). Malondialdehyde (MDA) and NO levels were evaluated. MDA level and NO activity were also higher in the I/R group than in the other groups. Picroside II treatment before hind limb I/R prevented these changes. Conclusion These results support that deformability of erythrocytes is decreased in I/R injury and picroside II plays a critical role to prevent these alterations. Further experimental and clinical studies are needed to evaluate and clarify the molecular mechanisms of action and clinical importance of these findings.
Drug Design Development and Therapy | 2018
Şaban Cem Sezen; Ayşegül Küçük; Abdullah Özer; Yiğit Kılıç; Barış Mardin; Metin Alkan; Fatmanur Duruk Erkent; Mustafa Arslan; Yusuf Ünal; Gursel Levent Oktar; Murat Tosun
Aim The aim of this study was to investigate the effects of levosimendan and thymoquinone (TQ) on lung injury after myocardial ischemia/reperfusion (I/R). Materials and methods Twenty-four Wistar albino rats were included in the study. The animals were randomly assigned to 1 of 4 experimental groups. In Group C (control group), left anterior descending artery was not occluded or reperfused. Myocardial I/R was induced by ligation of the left anterior descending artery for 30 min, followed by 2 h of reperfusion in the I/R, I/R-levosimendan (24 µg/kg) (IRL) group, and I/R-thymoquinone (0.2 mL/kg) (IRTQ) group. Tissue samples taken from the lungs of rats were histochemically stained with H&E and immunohistochemically stained with p53, Bcl 2, Bax, and caspase 3 primer antibodies. Results Increased expression of p53 and Bax was observed (4+), especially in the I/R group. In IRTQ and IRL groups, expression was also observed at various locations (2+, 3+). H&E staining revealed that that the lungs were severely damaged and the walls of the alveoli were too thick, the number of areas examined was increased during the evaluation. Caspase 3 expression was observed to be at an (1+, 2+) intensity that was usually weak and diffuse in multiple areas. Bcl 2 was not found to be expressed in any of the tissues. H&E staining revealed that that the lungs were severely damaged in the I/R group, with the walls of the channels and alveoli thickened and edematous, and also an intense inflammatory cell migration was observed. Immunohistochemical staining was more prominent in inflammatory areas and structures around the terminal bronchioles. Conclusion The findings in our study have shown that administration of levosimendan and TQ during I/R increases expression of caspase 3, p53, and Bax in lung tissue and has a protective effect on lung as distant organ. We suggest that findings of this study be elucidated with further large-scale clinical studies.
Drug Design Development and Therapy | 2017
Yiğit Kılıç; Abdullah Özer; Tolga Tatar; Mustafa Hakan Zor; Mehmet Kirişçi; Hakan Kartal; Ali Doğan Dursun; Deniz Billur; Mustafa Arslan; Ayşegül Küçük
Introduction Many structural and functional damages are observed in cells and tissues after reperfusion of previously viable ischemic tissues. Acute ischemia reperfusion (I/R) injury of lower extremities occurs especially when a temporary cross-clamp is applied to the abdominal aorta during aortic surgery. Research regarding the treatment of I/R injury has been increasing day-by-day. In this study, we aimed to investigate the effect of picroside II on skeletal muscle of rats experiencing simulated I/R. Materials and methods Twenty-four male Wistar albino rats weighing between 210 and 300 g were used in this study. Rats were randomly divided into 4 groups of 6 rats each (control, I/R, control + picroside II, and I/R + picroside II). The infrarenal section of the abdominal aorta was occluded with an atraumatic microvascular clamp in I/R group. The clamp was removed after 120 minutes and reperfusion was provided for a further 120 minutes. Picroside II (10 mg kg−1) was administered intraperitoneally to the animals in control + picroside II and I/R + picroside II groups. At the end of the study, skeletal muscle tissue was obtained for the determination of total oxidant status (TOS) and total antioxidant status (TAS) levels. Apoptosis was evaluated by TUNEL experiment. Results TOS levels were significantly higher in I/R group than that of control and I/R + picroside II groups (P=0.014, P=0.005, respectively). TAS levels were significantly higher in I/R group than that of control and I/R + picroside II groups (P=0.007 P=0.005, respectively). TUNEL assay revealed that picroside II reduced cell necrosis. Conclusion The results of this study demonstrated that picroside II plays a critical role to prevent I/R injury. Even though our results were found to be satisfactory, it should be encouraging to those who want to conduct future research on this topic.
Gazi Medical Journal | 2018
Abdullah Özer; Yiğit Kılıç; Şaban Cem Sezen; Ayşegül Küçük; Barış Mardin; Metin Alkan; Mustafa Arslan; Yusuf Ünal; Levent Oktar
Gazi Medical Journal | 2018
Abdullah Özer; Faruk Metin Çomu; Ayşegül Küçük; Yiğit Kılıç; Barış Mardin; Metin Alkan; Levent Oktar; Mustafa Arslan; Yusuf Ünal
Gazi Medical Journal | 2017
Abdullah Özer; Yiğit Kılıç; Barış Mardin; Fatma Bozbeyli; Serdar Kula; Erkan Iriz; Sedef Tunaoglu
Turkiye Klinikleri Thoracic Surgery - Special Topics | 2016
Abdullah Özer; Yiğit Kılıç
Turkiye Klinikleri Journal of Cardiovascular Surgery Special Topics | 2016
Abdullah Özer; Barış Mardin; Yiğit Kılıç; Arif Özbay; M. Levent Gökgöz
Medical Science and Discovery | 2016
Abdullah Özer; Yiğit Kılıç; Barış Mardin; Koray Akkan; Levent Okkar
Medical Science and Discovery | 2015
Abdullah Özer; Hakan Zor; Hüseyin Demirtaş; Yiğit Kılıç