Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yijun Gao is active.

Publication


Featured researches published by Yijun Gao.


Journal of Biological Chemistry | 2012

MicroRNA-143 (miR-143) Regulates Cancer Glycolysis via Targeting Hexokinase 2 Gene

Rong Fang; Tian Xiao; Zhaoyuan Fang; Yihua Sun; Fei Li; Yijun Gao; Yan Feng; Li Li; Ye Wang; Xiaolong Liu; Haiquan Chen; Xinyuan Liu; Hongbin Ji

Background: Hexokinase 2 (HK2) is frequently overexpressed in malignant tumors. Results: miR-143 down-regulates HK2 and inhibits glucose metabolism and cancer progression. Conclusion: miR-143 is an essential regulator of cancer glycolysis via targeting HK2. Significance: Discovering the important role of miRNA in cancer metabolism may provide potential targets for cancer therapy. High glycolysis, well known as “Warburg effect,” is frequently observed in a variety of cancers. Whether the deregulation of miRNAs contributes to the Warburg effect remains largely unknown. Because miRNA regulates gene expression at both mRNA and protein levels, we constructed a gene functional association network, which allows us to detect the gene activity instead of gene expression, to integratively analyze the microarray data for gene expression and miRNA expression profiling and identify glycolysis-related gene-miRNA pairs deregulated in cancer. Hexokinase 2 (HK2), coding for the first rate-limiting enzyme of glycolysis, is among the top list of genes predicted and potentially regulated by multiple miRNAs including miR-143. Interestingly, miR-143 expression was inversely associated with HK2 protein level but not mRNA level in human lung cancer samples. miR-143, down-regulated by mammalian target of rapamycin activation, reduces glucose metabolism and inhibits cancer cell proliferation and tumor formation through targeting HK2. Collectively, we have not only established a novel methodology for gene-miRNA pair prediction but also identified miR-143 as an essential regulator of cancer glycolysis via targeting HK2.


Proceedings of the National Academy of Sciences of the United States of America | 2010

LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling

Yijun Gao; Qian Xiao; Hui Min Ma; Li Li; Jun Liu; Yan Feng; Zhaoyuan Fang; Jing Wu; Xiangkun Han; Junhua Zhang; Yihua Sun; Gongwei Wu; Robert F. Padera; Haiquan Chen; Kwok-Kin Wong; Gaoxiang Ge; Hongbin Ji

LKB1 loss-of-function mutations, observed in ∼30% of human lung adenocarcinomas, contribute significantly to lung cancer malignancy progression. We show that lysyl oxidase (LOX), negatively regulated by LKB1 through mTOR-HIF-1α signaling axis, mediates lung cancer progression. Inhibition of LOX activity dramatically alleviates lung cancer malignancy progression. Up-regulated LOX expression triggers excess collagen deposition in Lkb1-deficient lung tumors, and thereafter results in enhanced cancer cell proliferation and invasiveness through activation of β1 integrin signaling. High LOX level and activity correlate with poor prognosis and metastasis. Our findings provide evidence of how LKB1 loss of function promotes lung cancer malignancy through remodeling of extracellular matrix microenvironment, and identify LOX as a potential target for disease treatment in lung cancer patients.


Cell Research | 2014

VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex

Wenjing Zhang; Yijun Gao; P. Li; Zhubing Shi; Tong Guo; Fei Li; Xiangkun Han; Yan Feng; Chao Zheng; Z.G. Wang; Fuming Li; Haiquan Chen; Zhaocai Zhou; Lei Zhang; Hongbin Ji

Lung cancer is one of the most devastating diseases worldwide with high incidence and mortality. Hippo (Hpo) pathway is a conserved regulator of organ size in both Drosophila and mammals. Emerging evidence has suggested the significance of Hpo pathway in cancer development. In this study, we identify VGLL4 as a novel tumor suppressor in lung carcinogenesis through negatively regulating the formation of YAP-TEAD complex, the core component of Hpo pathway. Our data show that VGLL4 is frequently observed to be lowly expressed in both mouse and human lung cancer specimens. Ectopic expression of VGLL4 significantly suppresses the growth of lung cancer cells in vitro. More importantly, VGLL4 significantly inhibits lung cancer progression in de novo mouse model. We further find that VGLL4 inhibits the activity of the YAP-TEAD transcriptional complex. Our data show that VGLL4 directly competes with YAP in binding to TEADs and executes its growth-inhibitory function through two TDU domains. Collectively, our study demonstrates that VGLL4 is a novel tumor suppressor for lung cancer through negatively regulating the YAP-TEAD complex formation and thus the Hpo pathway.


Functional Ecology | 2006

Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem

Zhaocai Zhou; Osbert Jianxin Sun; Jianhui Huang; Yijun Gao; Xingguo Han

Summary 1 The accelerating extinction rate of plant species and its effect on ecosystem functioning is a hotly debated topic in ecological research. Most research projects concerning the relationship between species diversity and productivity have been conducted in artificial plant communities, with only a few in natural ecosystems. In this study we examined the relationship between species diversity and above‐ground net primary productivity (ANPP) over two consecutive growth seasons (2004 and 2005) in a semi‐arid steppe ecosystem of northern China, that were subjected to different land uses.2 Land use affected the relationship between species diversity and ANPP in this semi‐arid steppe ecosystem. Exclusion of grazing without or with biomass removal by mowing increased ANPP, species richness and species diversity compared with free grazing; the effect was reflected mainly as enhanced importance of the perennial forbs functional group in terms of their relative contributions to ANPP, plant cover and plant abundance.3 Many mechanisms regulate the relationship between species diversity and productivity. Differential effects of anthropogenic activities on biodiversity and ecosystem functioning greatly complicate the analysis of such relationships. On grazing‐exclusion sites the relationship between ANPP and species richness can be best described as an exponential growth function (R 2 = 0·99, P < 0·001, n = 24); whereas on the free‐grazing site the relationship takes the form of exponential decay (R 2 = 0·96, P < 0·001, n = 24). Our study concludes that the mode and severity of disturbance are important factors for interpreting the relationship between species diversity and productivity in semi‐arid steppe ecosystems.


Nature Communications | 2014

Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma

Xiangkun Han; Fuming Li; Zhaoyuan Fang; Yijun Gao; Fei Li; Rong Fang; Shun Yao; Yihua Sun; Li Li; Wenjing Zhang; Huimin Ma; Qian Xiao; Gaoxiang Ge; Jing Fang; Hongda Wang; Lei Zhang; Kwok-Kin Wong; Haiquan Chen; Hongbin Ji

Lineage transition in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) of non-small cell lung cancer, as implicated by clinical observation of mixed ADC and SCC pathologies in adenosquamous cell carcinoma, remains a fundamental yet unsolved question. Here we provide in vivo evidence showing the transdifferentiation of lung cancer from ADC to SCC in mice: Lkb1-deficient lung ADC progressively transdifferentiates into SCC, via a pathologically mixed mAd-SCC intermediate. We find that reduction of lysyl oxidase (Lox) in Lkb1-deficient lung ADC decreases collagen disposition and triggers extracellular matrix remodelling and upregulates p63 expression, a SCC lineage survival oncogene. Pharmacological Lox inhibition promotes the transdifferentiation, whereas ectopic Lox expression significantly inhibits this process. Notably, ADC and SCC show differential responses to Lox inhibition. Collectively, our findings demonstrate the de novo transdifferentiation of lung ADC to SCC in mice and provide mechanistic insight that may have important implications for lung cancer treatment.


Protein & Cell | 2011

LKB1 in lung cancerigenesis: a serine/threonine kinase as tumor suppressor

Yijun Gao; Gaoxiang Ge; Hongbin Ji

Lung cancer is featured with high mortality, with a 15% five-year survival rate worldwide. Genetic alterations, such as loss of function of tumor suppressor genes, frequently contribute to lung cancer initiation, progression and metastasis. Liver kinase B1 (LKB1), as a serine/threonine kinase and tumor suppressor, is frequently mutated and inactivated in non-small cell lung cancer (NSCLC). Recent studies have provided strong evidences that LKB1 loss promotes lung cancerigenesis process, especially lung cancer progression and metastasis. This review will summarize recent progress on how LKB1 modulates the process of lung cancerigenesis, emphasizing on LKB1 downstream signaling pathways and biological functions. We will further discuss the potential development of prognostic biomarkers or therapeutic targets in lung cancer clinic based on the molecular alteration associated with deregulated LKB1 signaling.


Nature Communications | 2014

YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression

Yijun Gao; Wenjing Zhang; Xiangkun Han; Fuming Li; Xujun Wang; Rui Wang; Zhaoyuan Fang; Xinyuan Tong; Shun Yao; Fei Li; Yan Feng; Yihua Sun; Zhongzhou Yang; Kun-Liang Guan; Haiquan Chen; Lei Zhang; Hongbin Ji

Whether the Hippo pathway contributes to cell lineage transition under pathological conditions, especially tumorigenesis, remains largely unknown. Here we show that YAP, the major effector of the Hippo pathway, displays a distinct activation pattern in lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC); YAP is initially activated by LKB1 loss in lung ADC, which upregulates ZEB2 expression and represses DNp63 transcription in a default manner. During transdifferentiation, YAP is inactivated, which in turn relieves ZEB2-mediated default repression of DNp63 and triggers squamous differentiation reprogramming. Disruption of the YAP barrier for phenotypic transition significantly accelerates squamous transdifferentiation, whereas constitutive YAP activation conversely inhibits this transition. More importantly, ectopic DNp63 expression rescues the inhibitory effect of YAP on squamous transdifferentiation. These findings have established YAP as an essential barrier for lung cancer cell fate conversion and provided a mechanism for regulating cancer plasticity, which might hold important implication for YAP-targeted therapies.


Cancer Cell | 2015

LKB1 Inactivation Elicits a Redox Imbalance to Modulate Non-small Cell Lung Cancer Plasticity and Therapeutic Response

Fuming Li; Xiangkun Han; Fei Li; Rui Wang; Hui Wang; Yijun Gao; Xujun Wang; Zhaoyuan Fang; Wenjing Zhang; Shun Yao; Xinyuan Tong; Yuetong Wang; Yan Feng; Yihua Sun; Yuan Li; Kwok-Kin Wong; Qiwei Zhai; Haiquan Chen; Hongbin Ji

LKB1 regulates both cell growth and energy metabolism. It remains unclear how LKB1 inactivation coordinates tumor progression with metabolic adaptation in non-small cell lung cancer (NSCLC). Here in Kras(G12D);Lkb1(lox/lox) (KL) mouse model, we reveal differential reactive oxygen species (ROS) levels in lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC). ROS can modulate ADC-to-SCC transdifferentiation (AST). Further, pentose phosphate pathway deregulation and impaired fatty acid oxidation collectively contribute to the redox imbalance and functionally affect AST. Similar tumor and redox heterogeneity also exist in human NSCLC with LKB1 inactivation. In preclinical trials toward metabolic stress, certain KL ADC can develop drug resistance through squamous transdifferentiation. This study uncovers critical redox control of tumor plasticity that may affect therapeutic response in NSCLC.


Cancer Research | 2012

The CRTC1-NEDD9 Signaling Axis Mediates Lung Cancer Progression Caused by LKB1 Loss

Yan Feng; Ye Wang; Z.G. Wang; Zhaoyuan Fang; Fei Li; Yijun Gao; Hongyan Liu; Tian Xiao; Fuming Li; Yang Zhou; Qiwei Zhai; Xiaolong Liu; Yihua Sun; Nabeel Bardeesy; Kwok-Kin Wong; Haiquan Chen; Zhi Qi Xiong; Hongbin Ji

Somatic mutation of the tumor suppressor gene LKB1 occurs frequently in lung cancer where it causes tumor progression and metastasis, but the underlying mechanisms remain mainly unknown. Here, we show that the oncogene NEDD9 is an important downstream mediator of lung cancer progression evoked by LKB1 loss. In de novo mouse models, RNAi-mediated silencing of Nedd9 inhibited lung tumor progression, whereas ectopic NEDD9 expression accelerated this process. Mechanistically, LKB1 negatively regulated NEDD9 transcription by promoting cytosolic translocation of CRTC1 from the nucleus. Notably, ectopic expression of either NEDD9 or CRTC1 partially reversed the inhibitory function of LKB1 on metastasis of lung cancer cells. In clinical specimens, elevated expression of NEDD9 was associated with malignant progression and metastasis. Collectively, our results decipher the mechanism through which LKB1 deficiency promotes lung cancer progression and metastasis, and provide a mechanistic rationale for therapeutic attack of these processes.


Cancer Research | 2015

YAP Promotes Malignant Progression of Lkb1-Deficient Lung Adenocarcinoma through Downstream Regulation of Survivin

Wenjing Zhang; Yijun Gao; Fuming Li; Xinyuan Tong; Yan Ren; Xiangkun Han; Shun Yao; Fei Long; Zhongzhou Yang; Heng-Yu Fan; Lei Zhang; Hongbin Ji

The serine/threonine kinase LKB1 is a well-characterized tumor suppressor that governs diverse cellular processes, including growth, polarity, and metabolism. Somatic-inactivating mutations in LKB1 are observed in about 15% to 30% of non-small cell lung cancers (NSCLC). LKB1 inactivation confers lung adenocarcinomas (ADC) with malignant features that remain refractory to therapeutic intervention. YAP activation has been linked to LKB1 deficiency, but the role of YAP in lung ADC formation and progression is uncertain. In this study, we showed that ectopic expression of YAP in type II alveolar epithelial cells led to hyperplasia in mouse lungs. YAP overexpression in the Kras(G12D) lung cancer mouse model accelerated lung ADC progression. Conversely, YAP deletion dramatically delayed the progression of lung ADC in LKB1-deficient Kras(G12D) mice. Mechanistic studies identified the antiapoptotic oncoprotein survivin as the downstream mediator of YAP responsible for promoting malignant progression of LKB1-deficient lung ADC. Collectively, our findings identify YAP as an important contributor to lung cancer progression, rationalizing YAP inhibition in the context of LKB1 deficiency as a therapeutic strategy to treat lung ADC.

Collaboration


Dive into the Yijun Gao's collaboration.

Top Co-Authors

Avatar

Hongbin Ji

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fuming Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangkun Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenjing Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhaoyuan Fang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge