Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yik-Hoi Au-Yeung is active.

Publication


Featured researches published by Yik-Hoi Au-Yeung.


Linear Algebra and its Applications | 1979

3×3 Orthostochastic matrices and the convexity of generalized numerical ranges

Yik-Hoi Au-Yeung; Yiu-Tung Poon

Abstract Let U 3 be the set of all 3 × 3 unitary matrices, and let A and B be two 3 × 3 complex norḿal matrices. In this note, the authors first give a necessary and sufficient condition for a 3 × 3 doubly stochastic matrix to be orthostochastic and then use this result to consider the structure of the sets W ( A ) = {Diag UAU ∗ : U ∈ U 3 } and W ( A,B ) = {Tr UAU ∗ B : U ∈ U 3 }, where ∗ denotes the transpose conjugate.


Linear & Multilinear Algebra | 1983

A conjecture of marcus on the generalized numerical range

Yik-Hoi Au-Yeung; Nam-Kiu Tsing

Let A be an n × n complex normal matrix with eigenvalues . In the present paper the authors show that if are not collinear, then the set is an orthonormal sct in is not convex which answers a conjecture posed by Marcus concerning the convexity of the generalized numerical range.


Linear & Multilinear Algebra | 1984

Some theorems on the generalized numerical ranges

Yik-Hoi Au-Yeung; Nam-Kiu Tsing

Let F be the real field R the complex field C or the skew field H of real quaternions. For any c = i:c1,…,cn )∊ Rn: and for any two hermitian (symmetric) matrices A and B with elements in F, the authors give a unified proof that the set is convex (with n> 2 if F =R). They also show that the convexity problem, definite-ness problem, and inclusion problem associated with the above set, are all equivalent, and give some applications of these results.


Linear & Multilinear Algebra | 1984

On the convexity of numerical range in quaternionic hilbert spaces

Yik-Hoi Au-Yeung

Let A be a bounded linear operator in a quaternionic Hilberi space (H,(·,·)). The numerical range of A is defined to be the set W (A)={( Au, u): u e H, (u,u) = 1}. Quite different from the complex caseW (A) may not be convex. In this note the author proves that W (A) is convex if and only if R ∩ W (A) = {Req : q e W(A)}. where R is the real field and Re q denotes the real part of the quaternion q. For a normal operator A in a finite dimensional space H, the author gives a characterization on the convexity of W(A) in terms of ihe eigenvalues of A and also proves that the generalized numerical range of A is convex if and only if A is Hermitian.


Glasgow Mathematical Journal | 1970

A necessary and sufficient condition for simultaneous diagonalization of two hermitian matrices and its application

Yik-Hoi Au-Yeung

We denote by F the field R of real numbers, the field C of complex numbers, or the skew field H of real quaternions, and by Fn an n dimensional left vector space over F. If A is a matrix with elements in F, we denote by A* its conjugate transpose. In all three cases of F, an n × n matrix A is said to be hermitian if A = A*, and we say that two n × n hermitian matrices A and B with elements in F can be diagonalized simultaneously if there exists a non singular matrix U with elements in F such that UAU* and UBU* are diagonal matrices. We shall regard a vector u ∈ Fn as a l × n matrix and identify a 1 × 1 matrix with its single element, and we shall denote by diag {A1, …, Am} a diagonal block matrix with the square matrices A1, …, Am lying on its diagonal.


Aequationes Mathematicae | 1975

A simple proof of the convexity of the field of values defined by two hermitian forms

Yik-Hoi Au-Yeung

DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen, nicht kommerziellen Gebrauch bestimmt. Das Copyright bleibt bei den Herausgebern oder sonstigen Rechteinhabern. Als Nutzer sind Sie sind nicht dazu berechtigt, eine Lizenz zu übertragen, zu transferieren oder an Dritte weiter zu geben. Die Nutzung stellt keine Übertragung des Eigentumsrechts an diesem Dokument dar und gilt vorbehaltlich der folgenden Einschränkungen: Sie müssen auf sämtlichen Kopien dieses Dokuments alle Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen Schutz beibehalten; und Sie dürfen dieses Dokument nicht in irgend einer Weise abändern, noch dürfen Sie dieses Dokument für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen; es sei denn, es liegt Ihnen eine schriftliche Genehmigung von DigiZeitschriften e.V. und vom Herausgeber oder sonstigen Rechteinhaber vor. Mit dem Gebrauch von DigiZeitschriften e.V. und der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.


Linear Algebra and its Applications | 1991

Permutation matrices whose convex combinations are orthostochastic

Yik-Hoi Au-Yeung; Che-Man Cheng

Abstract Let P 1 ,…, P m be n × n permutation matrices. In this note, we give a simple necessary condition for all convex combinations of P 1 ,…, P m to be orthostochastic. We show that for n ⩽15 the condition is also sufficient, but for n ⩾15 whether the condition is sufficient or not is still open.


Linear Algebra and its Applications | 1975

On the semi-definiteness of the real pencil of two Hermitian matrices

Yik-Hoi Au-Yeung

Abstract Let A and B be two n × n real symmetric matrices. A theorem of Calabi and Greub-Milnor states that if n ⩾3 and A and B satisfy the condition (uAu′) 2 + (uBu′) 2 ≠ 0 for all nonzero vectors u , then there is a linear combination of A and B that is definite. In this note, the author proves two theorems of the semi-definiteness of a nontrivial linear combination of A and B by replacing the condition ( ∗ ) by another condition. One of these theorems is a generalization of the theorem of Greub-Milnor and Calabi.


Linear & Multilinear Algebra | 1993

Two formulas for the generalized radon-hurwitz number *

Yik-Hoi Au-Yeung; Che-Man Cheng

The maximal numberk, of m × n real matrices Ei satisfying is known as the generalized Radon-Hurwitz number, ρ(m,n). In this note, ρ(m,n) is evaluated for some particular values of m and n.


Glasgow Mathematical Journal | 1977

A remark on the generalized numerical range of a normal matrix

Yik-Hoi Au-Yeung; Fuk-Yum Sing

Collaboration


Dive into the Yik-Hoi Au-Yeung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fuk-Yum Sing

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Kam-Chuen Ng

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge