Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yikang S. Rong is active.

Publication


Featured researches published by Yikang S. Rong.


Genetics | 2013

Highly Efficient Genome Modifications Mediated by CRISPR/Cas9 in Drosophila

Zhongsheng Yu; Mengda Ren; Zhanxiang Wang; Bo Zhang; Yikang S. Rong; Renjie Jiao; Guanjun Gao

We report that Cas9/gRNA mediates efficient genetic modifications in Drosophila. Through targeting seven loci, we achieved a germline efficiency of up to 100%. Genes in both heterochromatin and euchromatin can be modified efficiently. Thus the Cas9/gRNA system is an attractive tool for rapid disruption of essentially any gene in Drosophila.


Current Biology | 2004

Telomere Protection without a Telomerase: The Role of ATM and Mre11 in Drosophila Telomere Maintenance

Xiaolin Bi; Su-Chin D Wei; Yikang S. Rong

The conserved ATM checkpoint kinase and the Mre11 DNA repair complex play essential and overlapping roles in maintaining genomic integrity. We conducted genetic and cytological studies on Drosophila atm and mre11 knockout mutants and discovered a telomere defect that was more severe than in any of the non-Drosophila systems studied. In mutant mitotic cells, an average of 30% of the chromosome ends engaged in telomere fusions. These fusions led to the formation and sometimes breakage of dicentric chromosomes, thus starting a devastating breakage-fusion-bridge cycle. Some of the fusions depended on DNA ligase IV, which suggested that they occurred by a nonhomologous end-joining (NHEJ) mechanism. Epistasis analyses results suggest that ATM and Mre11 might also act in the same telomere maintenance pathway in metazoans. Since Drosophila telomeres are not added by a telomerase, our findings support an additional role for both ATM and Mre11 in telomere maintenance that is independent of telomerase regulation.


The EMBO Journal | 2010

HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner

Guanjun Gao; Jean-Claude Walser; Michelle L Beaucher; Patrizia Morciano; Natalia Wesolowska; Jie Chen; Yikang S. Rong

Telomeres prevent chromosome ends from being repaired as double‐strand breaks (DSBs). Telomere identity in Drosophila is determined epigenetically with no sequence either necessary or sufficient. To better understand this sequence‐independent capping mechanism, we isolated proteins that interact with the HP1/ORC‐associated protein (HOAP) capping protein, and identified HipHop as a subunit of the complex. Loss of one protein destabilizes the other and renders telomeres susceptible to fusion. Both HipHop and HOAP are enriched at telomeres, where they also interact with the conserved HP1 protein. We developed a model telomere lacking repetitive sequences to study the distribution of HipHop, HOAP and HP1 using chromatin immunoprecipitation (ChIP). We discovered that they occupy a broad region >10 kb from the chromosome end and their binding is independent of the underlying DNA sequence. HipHop and HOAP are both rapidly evolving proteins yet their telomeric deposition is under the control of the conserved ATM and Mre11–Rad50–Nbs (MRN) proteins that modulate DNA structures at telomeres and at DSBs. Our characterization of HipHop and HOAP reveals functional analogies between the Drosophila proteins and subunits of the yeast and mammalian capping complexes, implicating conservation in epigenetic capping mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila

Guanjun Gao; Conor McMahon; Jie Chen; Yikang S. Rong

Gene targeting provides a powerful tool for dissecting gene function. However, repeated targeting of a single locus remains a practice mostly limited to unicellular organisms that afford simple targeting methodologies. We developed an efficient method to repeatedly target a single locus in Drosophila. In this method, which we term “site-specific integrase mediated repeated targeting” (SIRT), an attP attachment site for the phage phiC31 integrase is first targeted to the vicinity of the gene of interest by homologous recombination. All subsequent modifications of that gene are introduced by phiC31-mediated integration of plasmids carrying an attB attachment site and the desired mutation. This highly efficient integration results in a tandem duplication of the target locus, which is then reduced into a single copy carrying the mutation, likely by the efficient “single strand annealing” mechanism, induced with a DNA double-strand break (DSB). We used SIRT to generate a series of six mutations in the Drosophila nbs gene, ranging from single amino acid replacements and small in-frame deletions to complete deletion of the gene. Because all of the components of SIRT are functional in many different organisms, it is readily adaptable to other multicellular organisms.


G3: Genes, Genomes, Genetics | 2014

Efficient Gene Knock-out and Knock-in with Transgenic Cas9 in Drosophila

Zhaoyu Xue; Mengda Ren; Menghua Wu; Junbiao Dai; Yikang S. Rong; Guanjun Gao

Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Paternal imprint essential for the inheritance of telomere identity in Drosophila

Guanjun Gao; Yan Cheng; Natalia Wesolowska; Yikang S. Rong

Chromatin remodeling during sperm maturation could erase epigenetic landmarks on the paternal genome, creating a challenge for its reestablishment on fertilization. Here, we show that selective retention of a chromosomal protein in mature sperm protects the identity of paternal telomeres in Drosophila. The ms(3)k81 (k81) gene is a duplication of hiphop that encodes a telomeric protein. Although HipHop protects telomeres in somatic cells, K81 is produced exclusively in males and localizes to telomeres in postmitotic cells, including mature sperm. In embryos fathered by k81 mutants, the maternal supplies fail to reestablish a protective cap on paternal telomeres, leading to their fusions. These fusions hinder the segregation of the paternal genome and result in haploid embryos with maternal chromosomes. The functional divergence between hiphop and k81 manifests not only in their expression patterns but also in the protein functions that they encode. By swapping the two coding regions, we show that K81 can replace HipHop for somatic protection; however, HipHop cannot replace K81 in the germ line to specify telomere identity, because HipHop ectopically expressed in the testis is removed from chromatin during sperm maturation. HipHop lacks a short motif in K81 that is essential for K81 to survive the remodeling process. We show that the combined functions of HipHop and K81 are likely fulfilled by the single ancestral hiphop locus in other Drosophila species, supporting the hypothesis that the evolutionary process of subfunctionalization was responsible for the preservation of the hiphop-k81 duplicate.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Mre11-Rad50-Nbs complex is required to cap telomeres during Drosophila embryogenesis

Guanjun Gao; Xiaolin Bi; Jie Chen; Deepa Srikanta; Yikang S. Rong

Using Drosophila as a model system, we identified here a stringent requirement for Mre11-Rad50-Nbs (MRN) function in telomere protection during early embryonic development. Animals homozygous for hypomorphic mutations in either mre11 or nbs develop normally with minimal telomere dysfunction. However, they produce inviable embryos that succumb to failure of mitosis caused by covalent fusion of telomeric DNA. Interestingly, the molecular defect is not the absence of MRN interaction or of Mre11 nuclease activities, but the depletion of the maternal pool of Nbs protein in these embryos. Because of Nbs depletion, Mre11 and Rad50 (MR) are excluded from chromatin. This maternal effect lethality in Drosophila is similar to that seen in mice carrying hypomorphic mrn mutations found in human patients, suggesting a common defect in telomere maintenance because of the loss of MRN integrity.


Genetics | 2012

Multiple Pathways Suppress Telomere Addition to DNA Breaks in the Drosophila Germline

Michelle Beaucher; Xiao-Feng Zheng; Flavia L. Amariei; Yikang S. Rong

Telomeres protect chromosome ends from being repaired as double-strand breaks (DSBs). Just as DSB repair is suppressed at telomeres, de novo telomere addition is suppressed at the site of DSBs. To identify factors responsible for this suppression, we developed an assay to monitor de novo telomere formation in Drosophila, an organism in which telomeres can be established on chromosome ends with essentially any sequence. Germline expression of the I-SceI endonuclease resulted in precise telomere formation at its cut site with high efficiency. Using this assay, we quantified the frequency of telomere formation in different genetic backgrounds with known or possible defects in DNA damage repair. We showed that disruption of DSB repair factors (Rad51 or DNA ligase IV) or DSB sensing factors (ATRIP or MDC1) resulted in more efficient telomere formation. Interestingly, partial disruption of factors that normally regulate telomere protection (ATM or NBS) also led to higher frequencies of telomere formation, suggesting that these proteins have opposing roles in telomere maintenance vs. establishment. In the ku70 mutant background, telomere establishment was preceded by excessive degradation of DSB ends, which were stabilized upon telomere formation. Most strikingly, the removal of ATRIP caused a dramatic increase in telomeric retrotransposon attachment to broken ends. Our study identifies several pathways thatsuppress telomere addition at DSBs, paving the way for future mechanistic studies.


Genetics | 2013

Clustering and Protein Dynamics of Drosophila melanogaster Telomeres

Natalia Wesolowska; Flavia L. Amariei; Yikang S. Rong

Telomeres are obligatory chromosomal landmarks that demarcate the ends of linear chromosomes to distinguish them from broken ends and can also serve to organize the genome. In both budding and fission yeast, they cluster at the periphery of the nucleus, potentially to establish a compartment of silent chromatin. To gain insight into telomere organization in higher organisms, we investigated their distribution in interphase nuclei of Drosophila melanogaster. We focused on the syncytial blastoderm, an excellent developmental stage for live imaging due to the synchronous division of the nuclei at this time. We followed the EGFP-labeled telomeric protein HOAP in vivo and found that the 16 telomeres yield four to six foci per nucleus, indicative of clustering. Furthermore, we confirmed clustering in other somatic tissues. Importantly, we observed that HOAP signal intensity in the clusters increases in interphase, potentially due to loading of HOAP to newly replicated telomeres. To determine the rules governing clustering, we used in vivo imaging and fluorescence in situ hybridization to test several predictions. First, we inspected mutant embryos that develop as haploids and found that clustering is not mediated by associations between homologs. Second, we probed specifically for a telomere of novel sequence and found strong evidence against DNA sequence identity and homology as critical factors. Third, we ruled out predominance of intrachromosomal interactions by marking both ends of a chromosome. Based on these results, we propose that clustering is independent of sequence and is likely maintained by an as yet undetermined factor.


Genetics | 2013

Long-range targeted manipulation of the Drosophila genome by site-specific integration and recombinational resolution.

Natalia Wesolowska; Yikang S. Rong

Significant advances in genomics underscore the importance of targeted mutagenesis for gene function analysis. Here we have developed a scheme for long-range targeted manipulation of genes in the Drosophila genome. Utilizing an attP attachment site for the phiC31 integrase previously targeted to the nbs gene, we integrated an 80-kb genomic fragment at its endogenous locus to generate a tandem duplication of the region. We achieved reduction to a single copy by inducing recombination via a site-specific DNA break. We report that, despite the large size of the DNA fragment, both plasmid integration and duplication reduction can be accomplished efficiently. Importantly, the integrating genomic fragment can serve as a venue for introducing targeted modifications to the entire region. We successfully introduced a new attachment site 70 kb from the existing attP using this two-step scheme, making a new region susceptible to targeted mutagenesis. By experimenting with different placements of the future DNA break site in the integrating vector, we established a vector configuration that facilitates the recovery of desired modifications. We also show that reduction events can occur efficiently through unequal meiotic crossing over between the large duplications. Based on our results, we suggest that a collection of 1200 lines with attachment sites inserted every 140 kb throughout the genome would render all Drosophila genes amenable to targeted mutagenesis. Excitingly, all of the components involved are likely functional in other eukaryotes, making our scheme for long-range targeted manipulation readily applicable to other systems.

Collaboration


Dive into the Yikang S. Rong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaolin Bi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Deepa Srikanta

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Natalia Wesolowska

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Claude Walser

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michelle L Beaucher

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Min Gong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge