Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yili Liang is active.

Publication


Featured researches published by Yili Liang.


Microbial Biotechnology | 2010

Impacts of Shewanella oneidensis c‐type cytochromes on aerobic and anaerobic respiration

Haichun Gao; Soumitra Barua; Yili Liang; Lianming Wu; Yangyang Dong; Samantha B. Reed; Jingrong Chen; David E. Culley; David W. Kennedy; Yunfeng Yang; Zhili He; Kenneth H. Nealson; Jim K. Fredrickson; James M. Tiedje; Margaret F. Romine; Jizhong Zhou

Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c‐type cytochromes. To investigate the involvement of c‐type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr ‐1, 36 in‐frame deletion mutants, among possible 41 predicted, c‐type cytochrome genes were obtained. The potential involvement of each individual c‐type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well‐studied c‐type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr ‐1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c‐type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.


Scientific Reports | 2015

An integrated insight into the response of sedimentary microbial communities to heavy metal contamination

Huaqun Yin; Jiaojiao Niu; Youhua Ren; Jing Cong; Xiaoxia Zhang; Fenliang Fan; Yunhua Xiao; Xian Zhang; Jie Deng; Ming Xie; Zhili He; Jizhong Zhou; Yili Liang; Xueduan Liu

Response of biological communities to environmental stresses is a critical issue in ecology, but how microbial communities shift across heavy metal gradients remain unclear. To explore the microbial response to heavy metal contamination (e.g., Cr, Mn, Zn), the composition, structure and functional potential of sedimentary microbial community were investigated by sequencing of 16S rRNA gene amplicons and a functional gene microarray. Analysis of 16S rRNA sequences revealed that the composition and structure of sedimentary microbial communities changed significantly across a gradient of heavy metal contamination, and the relative abundances were higher for Firmicutes, Chloroflexi and Crenarchaeota, but lower for Proteobacteria and Actinobacteria in highly contaminated samples. Also, molecular ecological network analysis of sequencing data indicated that their possible interactions might be enhanced in highly contaminated communities. Correspondently, key functional genes involved in metal homeostasis (e.g., chrR, metC, merB), carbon metabolism, and organic remediation showed a higher abundance in highly contaminated samples, indicating that bacterial communities in contaminated areas may modulate their energy consumption and organic remediation ability. This study indicated that the sedimentary indigenous microbial community may shift the composition and structure as well as function priority and interaction network to increase their adaptability and/or resistance to environmental contamination.


BMC Microbiology | 2014

Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans

Huaqun Yin; Xian Zhang; Xiaoqi Li; Zhili He; Yili Liang; Xue Guo; Qi Hu; Yunhua Xiao; Jing Cong; Liyuan Ma; Jiaojiao Niu; Xueduan Liu

BackgroundAcidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation.ResultsThe genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase.ConclusionSulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.


BMC Microbiology | 2010

Pellicle formation in Shewanella oneidensis

Yili Liang; Haichun Gao; Jingrong Chen; Yangyang Dong; Lin Wu; Zhili He; Xueduan Liu; Guanzhou Qiu; Jizhong Zhou

BackgroundAlthough solid surface-associated biofilm development of S. oneidensis has been extensively studied in recent years, pellicles formed at the air-liquid interface are largely overlooked. The goal of this work was to understand basic requirements and mechanism of pellicle formation in S. oneidensis.ResultsWe demonstrated that pellicle formation can be completed when oxygen and certain cations were present. Ca(II), Mn(II), Cu(II), and Zn(II) were essential for the process evidenced by fully rescuing pellicle formation of S. oneidensis from the EDTA treatment while Mg (II), Fe(II), and Fe(III) were much less effective. Proteins rather than DNA were crucial in pellicle formation and the major exopolysaccharides may be rich in mannose. Mutational analysis revealed that flagella were not required for pellicle formation but flagellum-less mutants delayed pellicle development substantially, likely due to reduced growth in static media. The analysis also demonstrated that AggA type I secretion system was essential in formation of pellicles but not of solid surface-associated biofilms in S. oneidensis.ConclusionThis systematic characterization of pellicle formation shed lights on our understanding of biofilm formation in S. oneidensis and indicated that the pellicle may serve as a good research model for studying bacterial communities.


Bioresource Technology | 2011

Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium

Guanzhou Qiu; Qian Li; Runlan Yu; Zhanxue Sun; Yajie Liu; Miao Chen; Huaqun Yin; Yage Zhang; Yili Liang; Lingling Xu; Limin Sun; Xueduan Liu

A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface.


BMC Genetics | 2016

Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap

Xian Zhang; Jiaojiao Niu; Yili Liang; Xueduan Liu; Huaqun Yin

BackgroundMetagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap.ResultsTaxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system.ConclusionOur study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap.


PLOS ONE | 2014

Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST.

Xue Guo; Huaqun Yin; Yili Liang; Qi Hu; Xishu Zhou; Yunhua Xiao; Liyuan Ma; Xian Zhang; Guanzhou Qiu; Xueduan Liu

The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs). The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal resistance systems to adapt the heavy metal-containing environments.


Current Microbiology | 2011

The Community Dynamics of Major Bioleaching Microorganisms During Chalcopyrite Leaching Under the Effect of Organics

Qihou Li; Ye Tian; Xian Fu; Huaqun Yin; Zhijun Zhou; Yiting Liang; Guanzhou Qiu; Jie Liu; Hongwei Liu; Yili Liang; Li Shen; Jing Cong; Xueduan Liu

To determine the effect of organics (yeast extract) on microbial community during chalcopyrite bioleaching at different temperature, real-time polymerase chain reaction (PCR) was employed to analyze community dynamics of major bacteria applied in bioleaching. The results showed that yeast extract exerted great impact on microbial community, and therefore influencing bioleaching rate. To be specific, yeast extract was adverse to this bioleaching process at 30°C due to decreased proportion of important chemolithotrophs such as Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. However, yeast extract could promote bioleaching rate at 40°C on account of the increased number and enhanced work of Ferroplasma thermophilum, a kind of facultative bacteria. Similarly, bioleaching rate was enhanced under the effect of yeast extract at 50°C owing to the work of Acidianus brierleyi. At 60°C, bioleaching rate was close to 100% and temperature was the dominant factor determining bioleaching rate. Interestingly, the existence of yeast extract greatly enhanced the relative competitiveness of Ferroplasma thermophilum in this complex bioleaching microbial community.


Applied and Environmental Microbiology | 2013

RubisCO Gene Clusters Found in a Metagenome Microarray from Acid Mine Drainage

Xue Guo; Huaqun Yin; Jing Cong; Zhimin Dai; Yili Liang; Xueduan Liu

ABSTRACT The enzyme responsible for carbon dioxide fixation in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), is always detected as a phylogenetic marker to analyze the distribution and activity of autotrophic bacteria. However, such an approach provides no indication as to the significance of genomic content and organization. Horizontal transfers of RubisCO genes occurring in eubacteria and plastids may seriously affect the credibility of this approach. Here, we presented a new method to analyze the diversity and genomic content of RubisCO genes in acid mine drainage (AMD). A metagenome microarray containing 7,776 large-insertion fosmids was constructed to quickly screen genome fragments containing RubisCO form I large-subunit genes (cbbL). Forty-six cbbL-containing fosmids were detected, and six fosmids were fully sequenced. To evaluate the reliability of the metagenome microarray and understand the microbial community in AMD, the diversities of cbbL and the 16S rRNA gene were analyzed. Fosmid sequences revealed that the form I RubisCO gene cluster could be subdivided into form IA and IB RubisCO gene clusters in AMD, because of significant divergences in molecular phylogenetics and conservative genomic organization. Interestingly, the form I RubisCO gene cluster coexisted with the form II RubisCO gene cluster in one fosmid genomic fragment. Phylogenetic analyses revealed that horizontal transfers of RubisCO genes may occur widely in AMD, which makes the evolutionary history of RubisCO difficult to reconcile with organismal phylogeny.


Bioresource Technology | 2011

The effect of the introduction of exogenous strain Acidithiobacillus thiooxidans A01 on functional gene expression, structure and function of indigenous consortium during pyrite bioleaching

Yi Liu; Huaqun Yin; Weimin Zeng; Yili Liang; Yao Liu; Ngom Baba; Guanzhou Qiu; Li Shen; Xian Fu; Xueduan Liu

Acidithiobacillus thiooxidans A01 was added to a consortium of bioleaching bacteria including Acidithiobacilluscaldus, Leptospirillumferriphilum, Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans, Acidiphilium spp., and Ferroplasma thermophilum cultured in modified 9 K medium containing 0.5% (w/v) pyrite, and 10.7% increase of bioleaching rate was observed. Changes in community structure and gene expression were monitored with real-time PCR and functional gene arrays (FGAs). Real-time PCR showed that addition of At. thiooxidans caused increased numbers of all consortium members except At. caldus, and At. caldus, L. ferriphilum, and F. thermophilum remained dominant in this community. FGAs results showed that after addition of At. thiooxidans, most genes involved in iron, sulfur, carbon, and nitrogen metabolisms, metal resistance, electron transport, and extracellular polymeric substances of L. ferriphilum, F. thermophilum, and Acidiphilium spp., were up-regulated while most of these genes were down-regulated at 70-78 h in At. caldus and up-regulated in At. ferrooxidans, then down-regulated at 82-86 h.

Collaboration


Dive into the Yili Liang's collaboration.

Top Co-Authors

Avatar

Xueduan Liu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Huaqun Yin

Central South University

View shared research outputs
Top Co-Authors

Avatar

Yunhua Xiao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Xian Zhang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Liyuan Ma

Central South University

View shared research outputs
Top Co-Authors

Avatar

Guanzhou Qiu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Jiaojiao Niu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Hongwei Liu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Xue Guo

Central South University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge