Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yilin Yang is active.

Publication


Featured researches published by Yilin Yang.


Current Drug Targets | 2012

Current Research on Opioid Receptor Function

Yuan Feng; Xiaozhou He; Yilin Yang; Dongman Chao; Lawrence H. Lazarus; Ying Xia

The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The upregulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and antioxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article is to review the recent work done on opioids and their receptor functions. It shall provide an informative reference for better understanding the opioid system and further elucidation of the opioid receptor function from a physiological and pharmacological point of view.


PLOS ONE | 2013

Functionalized Graphene Oxide Mediated Adriamycin Delivery and miR-21 Gene Silencing to Overcome Tumor Multidrug Resistance In Vitro

Feng Zhi; Haifeng Dong; Xuefeng Jia; Wenjie Guo; Huiting Lu; Yilin Yang; Huangxian Ju; Xueji Zhang; Yiqiao Hu

Multidrug resistance (MDR) is a major impediment to successful cancer chemotherapy. Co-delivery of novel MDR-reversing agents and anticancer drugs to cancer cells holds great promise for cancer treatment. MicroRNA-21 (miR-21) overexpression is associated with the development and progression of MDR in breast cancer, and it is emerging as a novel and promising MDR-reversing target. In this study, a multifunctional nanocomplex, composed of polyethylenimine (PEI)/poly(sodium 4-styrenesulfonates) (PSS)/graphene oxide (GO) and termed PPG, was prepared using the layer-by-layer assembly method to evaluate the reversal effects of PPG as a carrier for adriamycin (ADR) along with miR-21 targeted siRNA (anti-miR-21) in cancer drug resistance. ADR was firstly loaded onto the PPG surface (PPGADR) by physical mixing and anti-miR-21 was sequentially loaded onto PPGADR through electric absorption to form anti-miR-21PPGADR. Cell experiments showed that PPG significantly enhanced the accumulation of ADR in MCF-7/ADR cells (an ADR resistant breast cancer cell line) and exhibited much higher cytotoxicity than free ADR, suggesting that PPG could effectively reverse ADR resistance of MCF-7/ADR. Furthermore, the enhanced therapeutic efficacy of PPG could be correlated with effective silencing of miR-21 and with increased accumulation of ADR in drug-resistant tumor cells. The endocytosis study confirmed that PPG could effectively carry drug molecules into cells via the caveolae and clathrin-mediated endocytosis pathways. These results suggest that this PPG could be a potential and efficient non-viral vector for reversing MDR, and the strategy of combining anticancer drugs with miRNA therapy to overcome MDR could be an attractive approach in cancer treatment.


PLOS ONE | 2013

Identification of Circulating MicroRNAs as Potential Biomarkers for Detecting Acute Myeloid Leukemia

Feng Zhi; Xiangshan Cao; Xiaobao Xie; Biao Wang; Weimin Dong; Weiying Gu; Yun Ling; Rong Wang; Yilin Yang; Yan Liu

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The disease is characterized by various cytogenetic and molecular abnormalities with distinct prognoses and gene expression profiles. Emerging evidence has suggested that circulating microRNAs (miRNAs) could serve as noninvasive biomarkers for cancer detection; however, little is known about circulating miRNA profiles in AML patients. In this study, a genome-wide serum miRNA expression analysis was performed using Solexa sequencing for initial screen, followed by validation with real-time PCR assays. The analysis was conducted on training and verification sets of serum samples from 140 newly diagnosed AML patients and 135 normal adult donors. After a two-phase selection and validation process, 6 miRNAs, miR-10a-5p, miR-93-5p, miR-129-5p, miR-155-5p, miR-181b-5p and miR-320d, were found to have significantly different expression levels in AML compared with control serum samples. Furthermore, unsupervised clustering analysis revealed the remarkable ability of the 6-miRNA profile to differentiate between AML patients and normal controls. The areas under the ROC curve for the selected miRNAs ranged from 0.8129 to 0.9531. More importantly, miR-181b-5p levels in serum were significantly associated with overall survival. These data demonstrated that the expression patterns of circulating miRNAs were systematically altered in AML and miR-181b-5p may serve as a predictor for overall survival in AML patients.


BMC Biology | 2009

δ-Opioid receptor activation attenuates oxidative injury in the ischemic rat brain

Yilin Yang; Xiwei Xia; Yi Zhang; Qiang Wang; Lu Li; Guanghua Luo; Ying Xia

BackgroundWe have recently shown that δ-opioid receptors (DORs) play an important role in neuroprotection from hypoxic injury via the regulation of extracellular signaling-regulated kinase (ERK) and cytochrome c release. Since ERK and cytochrome c are differentially involved in caspase signaling of oxidative injury that significantly contributes to neuronal damage in ischemia/reperfusion, we considered if DOR activation protects the ischemic brain by attenuating oxidative injury.ResultsWe observed that, in a model of cerebral ischemia with middle cerebral artery occlusion, DOR activation increased the activity of major antioxidant enzymes, glutathione peroxidase and superoxide dismutase, and decreased malondialdehyde and nitric oxide levels in the cortex exposed to cerebral ischemia/reperfusion. In addition, DOR activation reduced caspase 3 expression, though it did not significantly affect the increase in interleukin (IL)1β and tumor necrosis factor (TNF)α expression at the same timepoint. PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) extracellular signaling-regulated kinase kinase, accelerated animal death during ischemia/reperfusion.ConclusionDOR activation attenuates oxidative injury in the brain exposed to ischemia/reperfusion by enhancing antioxidant ability and inhibiting caspase activity, which provides novel insights into the mechanism of DOR neuroprotection.


Cellular and Molecular Life Sciences | 2013

Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events

Xiaozhou He; Harleen K. Sandhu; Yilin Yang; Fei Hua; Nathalee Belser; Dong H. Kim; Ying Xia

Hypoxic/ischemic injury remains the most dreaded cause of neurological disability and mortality. Despite the humbling experiences due to lack of promising therapy, our understanding of the complex cascades underlying the neuronal insult has led to advances in basic science research. One of the most noteworthy has been the effect of opioid receptors, especially the delta-opioid receptor (DOR), on hypoxic/ischemic neurons. Our recent studies, and those of others worldwide, present strong evidence that sheds light on DOR-mediated neuroprotection in the brain, especially in the cortex. The mechanisms of DOR neuroprotection are broadly categorized as: (1) stabilization of the ionic homeostasis, (2) inhibition of excitatory transmitter release, (3) attenuation of disrupted neuronal transmission, (4) increase in antioxidant capacity, (5) regulation of intracellular pathways—inhibition of apoptotic signals and activation of pro-survival signaling, (6) regulation of specific gene and protein expression, and (7) up-regulation of endogenous opioid release and/or DOR expression. Depending upon the severity and duration of hypoxic/ischemic insult, the release of endogenous opioids and DOR expression are regulated in response to the stress, and DOR signaling acts at multiple levels to confer neuronal tolerance to harmful insult. The phenomenon of DOR neuroprotection offers a potential clue for a promising target that may have significant clinical implications in our quest for neurotherapeutics.


Journal of Pharmacy and Pharmacology | 2013

Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel

Xi Chen; Feng Zhi; Xuefeng Jia; Xiang Zhang; Rohan Ambardekar; Zhengjie Meng; Anant Paradkar; Yiqiao Hu; Yilin Yang

The aim of this study was to develop a curcumin intranasal thermosensitive hydrogel and to improve its brain targeting efficiency.


Neuro-oncology | 2015

Identification of 9 serum microRNAs as potential noninvasive biomarkers of human astrocytoma

Feng Zhi; Naiyuan Shao; Rong Wang; Danni Deng; Lian Xue; Qiang Wang; Yi Zhang; Yimin Shi; Xiwei Xia; Suinuan Wang; Qing Lan; Yilin Yang

BACKGROUND Circulating microRNAs (miRNAs) are emerging as promising biomarkers for human cancer. In the current study, we investigated the potential use of serum miRNAs as biomarkers for diagnosis and prognosis in a cohort of Chinese astrocytoma patients. METHODS An initial screening of the circulating miRNA expression profile was performed on pooled serum samples from 10 preoperative patients and 10 healthy controls using a TaqMan low-density array. The selected serum miRNAs were then validated in 90 preoperative patients and 110 healthy controls who were randomly divided into a training set and a validation set. An additional double-blind test was performed in 50 astrocytomas and 50 controls to assess the serum miRNA-based biomarker accuracy in predicting astrocytoma. The differentially expressed miRNAs were evaluated in paired preoperative and postoperative serum samples from 73 astrocytoma patients. The correlation of the miRNA levels with survival in astrocytoma samples was estimated. RESULTS Nine serum miRNAs were significantly increased in the astrocytoma patients. The biomarker composed of these 9 miRNAs had high sensitivity, specificity, and accuracy. These 9 miRNAs were markedly decreased in the serum after operation. The upregulation of miR-20a-5p, miR-106a-5p, and miR-181b-5p was associated with advanced clinical stages of astrocytoma. Kaplan-Meier survival analysis showed that the high expression of miR-19a-3p, miR-106a-5p, and miR-181b-5p was significantly associated with poor patient survival. Finally, the combined 3-miRNAs panel was an important prognostic predictor, independent of other clinicopathological factors. CONCLUSIONS The results indicated the potential of serum miRNAs as novel diagnostic and prognostic biomarkers for human astrocytoma.


PLOS ONE | 2013

miR-106a-5p Inhibits the Proliferation and Migration of Astrocytoma Cells and Promotes Apoptosis by Targeting FASTK

Feng Zhi; Guangxin Zhou; Naiyuan Shao; Xiwei Xia; Yimin Shi; Qiang Wang; Yi Zhang; Rong Wang; Lian Xue; Suinuan Wang; Sujia Wu; Ya Peng; Yilin Yang

Astrocytomas are common malignant intracranial tumors that comprise the majority of adult primary central nervous system tumors. MicroRNAs (miRNAs) are small, non-coding RNAs (20–24 nucleotides) that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In our previous studies, we found that the downregulation of miR-106a-5p in astrocytomas is associated with poor prognosis. However, its specific gene target(s) and underlying functional mechanism(s) in astrocytomas remain unclear. In this study, we used mRNA microarray experiments to measure global mRNA expression in the presence of increased or decreased miR-106a-5p levels. We then performed bioinformatics analysis based on multiple target prediction algorithms to obtain candidate target genes that were further validated by computational predictions, western blot analysis, quantitative real-time PCR, and the luciferase reporter assay. Fas-activated serine/threonine kinase (FASTK) was identified as a direct target of miR-106a-5p. In human astrocytomas, miR-106a-5p is downregulated and negatively associated with clinical staging, whereas FASTK is upregulated and positively associated with advanced clinical stages, at both the protein and mRNA levels. Furthermore, Kaplan-Meier analysis revealed that the reduced expression of miR-106a-5p or the increased expression of FASTK is significantly associated with poor survival outcome. These results further supported the finding that FASTK is a direct target gene of miR-106a-5p. Next, we explored the function of miR-106a-5p and FASTK during astrocytoma progression. Through gain-of-function and loss-of-function studies, we demonstrated that miR-106a-5p can significantly inhibit cell proliferation and migration and can promote cell apoptosis in vitro. The knockdown of FASTK induced similar effects on astrocytoma cells as those induced by the overexpression of miR-106a-5p. These observations suggest that miR-106a-5p functions as a tumor suppressor during the development of astrocytomas by targeting FASTK.


International Journal of Cancer | 2013

A microRNA expression signature predicts meningioma recurrence

Feng Zhi; Guangxin Zhou; Suinuan Wang; Yimin Shi; Ya Peng; Naiyuan Shao; Wei Guan; Hongtao Qu; Yi Zhang; Qiang Wang; Changchun Yang; Rong Wang; Sujia Wu; Xiwei Xia; Yilin Yang

The aberrant expression of microRNAs (miRNAs) is associated with a variety of diseases, including cancer. In our study, we examined the miRNA expression profile of meningiomas, which is a common type of benign intracranial tumor derived from the protective meninges membranes that surround the brain and spinal cord. To define a typical human meningioma miRNA profile, the expression of 200 miRNAs in a training sample set were screened using quantitative reverse transcription polymerase chain reaction analysis, and then significantly altered miRNAs were validated in a secondary independent sample set. Kaplan–Meier and univariate/multivariate Cox proportional hazard regression analyses were performed to assess whether miRNA expression could predict the recurrence of meningioma after tumor resection. After a two‐phase selection and validation process, 14 miRNAs were found to exhibit significantly different expression profiles in meningioma samples compared to normal adjacent tissue (NAT) samples. Unsupervised clustering analysis indicated that the 14‐miRNA profile differed between tumor and NAT samples. Downregulation of miR‐29c‐3p and miR‐219‐5p were found to be associated with advanced clinical stages of meningioma. Kaplan–Meier analysis showed that high expression of miR‐190a and low expression of miR‐29c‐3p and miR‐219‐5p correlated significantly with higher recurrence rates in meningioma patients. Cox proportional hazard regression analysis revealed that miR‐190a expression level is an important prognostic predictor that is independent of other clinicopathological factors. Our results suggest that the use of miRNA profiling has significant potential as an effective diagnostic and prognostic marker in defining the expression signature of meningiomas and in predicting postsurgical outcomes.


Cancer Science | 2016

MicroRNA-124-3p regulates cell proliferation, invasion, apoptosis, and bioenergetics by targeting PIM1 in astrocytoma.

Danni Deng; Lei Wang; Yao Chen; Bowen Li; Lian Xue; Naiyuan Shao; Qiang Wang; Xiwei Xia; Yilin Yang; Feng Zhi

The PIM1 protein is an important regulator of cell proliferation, the cell cycle, apoptosis, and metabolism in various human cancers. MicroRNAs (miRNAs) are powerful post‐transcriptional gene regulators that function through translational repression or transcript destabilization. Therefore, we aimed to identify whether a close relationship exists between PIM1 and miRNAs. PIM1 protein levels and mRNA levels were significantly upregulated in astrocytoma tissues, indicating the oncogenic role of PIM1 in astrocytoma. Further bioinformatics analysis indicated that miR‐124‐3p targeted the 3′‐UTR of PIM1. We also observed an inverse correlation between the miR‐124‐3p levels and PIM1 protein or mRNA levels in astrocytoma samples. Next, we experimentally confirmed that miR‐124‐3p directly recognizes the 3′‐UTR of the PIM1 transcript and regulates PIM1 expression at both the protein and mRNA levels. Furthermore, we examined the biological consequences of miR‐124‐3p targeting PIM1 in vitro. We showed that the repression of PIM1 in astrocytoma cancer cells by miR‐124‐3p suppressed proliferation, invasion, and aerobic glycolysis and promoted apoptosis. We observed that the restoration or inhibition of PIM1 activity resulted in effects that were similar to those induced by miR‐124‐3p inhibitors or mimics in cancer cells. Finally, overexpression of PIM1 rescued the inhibitory effects of miR‐124‐3p. In summary, these findings aid in understanding the tumor‐suppressive role of miR‐124‐3p in astrocytoma pathogenesis through the inhibition of PIM1 translation.

Collaboration


Dive into the Yilin Yang's collaboration.

Top Co-Authors

Avatar

Ying Xia

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Dongman Chao

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Dong H. Kim

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meredith L. Moore

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Feng Zhi

Soochow University (Taiwan)

View shared research outputs
Top Co-Authors

Avatar

Harleen K. Sandhu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Xu

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge