Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yiling Yu is active.

Publication


Featured researches published by Yiling Yu.


ACS Nano | 2014

Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Monolayer and Few-Layer MoS2 Films onto Arbitrary Substrates

Alper Gurarslan; Yifei Yu; Liqin Su; Yiling Yu; Francisco Suarez; Shanshan Yao; Yong Zhu; Mehmet C. Öztürk; Yong Zhang; Linyou Cao

The transfer of synthesized 2D MoS2 films is important for fundamental and applied research. However, it is problematic to translate the well-established transfer processes for graphene to MoS2 due to different growth mechanisms and surface properties. Here we demonstrate a surface-energy-assisted process that can perfectly transfer centimeter-scale monolayer and few-layer MoS2 films from original growth substrates onto arbitrary substrates with no observable wrinkles, cracks, and polymer residues. The unique strategies used in this process include leveraging the penetration of water between hydrophobic MoS2 films and hydrophilic growth substrates to lift off the films and dry transferring the film after the lift off. This is in stark contrast with the previous transfer process for synthesized MoS2 films, which explores the etching of the growth substrate by hot base solutions to lift off the films. Our transfer process can effectively eliminate the mechanical force caused by bubble generations, the attacks from chemical etchants, and the capillary force induced when transferring the film outside solutions as in the previous transfer process, which consists of the major causes for the previous unsatisfactory transfer. Our transfer process also benefits from using polystyrene (PS), instead of poly(methyl methacrylate) (PMMA) that was widely used previously, as the carrier polymer. PS can form more intimate interaction with MoS2 films than PMMA and is important for maintaining the integrity of the film during the transfer process. This surface-energy-assisted approach can be generally applied to the transfer of other 2D materials, such as WS2.


Nano Letters | 2012

Dielectric Core–Shell Optical Antennas for Strong Solar Absorption Enhancement

Yiling Yu; Vivian E. Ferry; A. Paul Alivisatos; Linyou Cao

We demonstrate a new light trapping technique that exploits dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost 1 order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick hydrogenated amorphous silicon (a-Si:H) thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical antireflective coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and nonabsorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances (LMRs) in the semiconductor part and antireflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar-to-fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors, and solid-state lighting diodes.


Optics Express | 2012

Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures

Yiling Yu; Linyou Cao

We present an intuitive, simple theoretical model, coupled leaky mode theory (CLMT), to analyze the light absorption of 2D, 1D, and 0D semiconductor nanostructures. This model correlates the light absorption of nanostructures to the optical coupling between incident light and leaky modes of the nanostructure. Unlike conventional methods such as Mie theory that requests specific physical features of nanostructures to evaluate the absorption, the CLMT model provides an unprecedented capability to analyze the absorption using eigen values of the leaky modes. Because the eigenvalue shows very mild dependence on the physical features of nanostructures, we can generally apply one set of eigenvalues calculated using a real, constant refractive index to calculations for the absorption of various nanostructures with different sizes, different materials, and wavelength-dependent complex refractive index. This CLMT model is general, simple, yet reasonably accurate, and offers new intuitive physical insights that the light absorption of nanostructures is governed by the coupling efficiency between incident light and leaky modes of the structure.


Scientific Reports | 2015

Exciton-dominated dielectric function of atomically thin MoS2 films

Yiling Yu; Yifei Yu; Yong-Qing Cai; Wei Li; Alper Gurarslan; Hartwin Peelaers; D. E. Aspnes; Chris G. Van de Walle; Nhan V. Nguyen; Yong Wei Zhang; Linyou Cao

We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. The knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.


Physical Review B | 2016

Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers

Yiling Yu; Yifei Yu; Chao Xu; Andy Barrette; Kenan Gundogdu; Linyou Cao

We quantitatively evaluate the exciton-exciton annihilation (EEA) and its effect on light emission properties in monolayer TMDC materials, including WS2, MoS2, and WSe2. The EEA rate is found to be 0.3 cm2/s and 0.1 cm2/s for suspended WS2 and MoS2 monolayers, respectively, and subject to the influence from substrates, being 0.1 cm2/s and 0.05 cm2/s for the supported WS2 and MoS2 on sapphire substrates. It can substantially affect the luminescence efficiency of suspended monolayers even at an exciton concentration as low as 109 cm-2, but plays a milder role for supported monolayers due to the effect of the substrate. However, regardless the presence of substrates or not, the lasing threshold of the monolayer is always predominantly determined by the EEA, which is estimated to be 12-18 MW/cm2 if using 532 nm as the pumping wavelength.


Nano Letters | 2013

General Modal Properties of Optical Resonances in Subwavelength Nonspherical Dielectric Structures

Lujun Huang; Yiling Yu; Linyou Cao

Subwavelength dielectric structures offer an attractive low-loss alternative to plasmonic materials for the development of resonant optics functionalities such as metamaterials and optical antennas. Nonspherical-like rectangular dielectric structures are of the most interest from the standpoint of device development due to fabrication convenience. However, no intuitive fundamental understanding of the optical resonance in nonspherical dielectric structures is available, which has substantially delayed the development of dielectric resonant optics devices. Here, we elucidate the general fundamentals of the optical resonance in nonspherical subwavelength dielectric structures with different shapes (rectangular or triangular) and dimensionalities (1D nanowires or 0D nanoparticles). We demonstrate that the optical properties of nonspherical dielectric structures are dictated by the eigenvalue of the structures leaky modes. Leaky modes are defined as optical modes with propagating waves outside the structure. We also elucidate the dependence of the modal eigenvalue on physical features of the structure. The eigenvalue shows scale invariance with respect to the size of the structure, weak dependence on the refractive index, but linear dependence on the size ratio of different sides of the structure. We propose a modified Fabry-Perot model to account for the linear dependence. The knowledge of leaky modes, including the role in optical responses and the dependence on physical features, can serve as a powerful guide for the rational design of devices with desired optical resonances. It may open up a pathway to design devices with functionality that has not been explored due to the lack of intuitive understanding, for instance, imaging devices able to sense incident angle or superabsorbing photodetectors.


ACS Nano | 2016

Atomically Thin MoS2 Narrowband and Broadband Light Superabsorbers

Lujun Huang; Guoqing Li; Alper Gurarslan; Yiling Yu; Ronny Kirste; Wei Guo; Junjie Zhao; Ramon Collazo; Zlatko Sitar; Gregory N. Parsons; Michael W. Kudenov; Linyou Cao

We present a combined theoretical and experimental effort to enable strong light absorption (>70%) in atomically thin MoS2 films (≤4 layers) for either narrowband incidence with arbitrarily prespecified wavelengths or broadband incidence like solar radiation. This is achieved by integrating the films with resonant photonic structures that are deterministically designed using a unique reverse design approach based on leaky mode coupling. The design starts with identifying the properties of leaky modes necessary for the targeted strong absorption, followed by searching for the geometrical features of nanostructures to support the desired modes. This process is very intuitive and only involves a minimal amount of computation, thanks to the straightforward correlations between optical functionality and leaky modes as well as between leaky modes and the geometrical feature of nanostructures. The result may provide useful guidance for the development of high-performance atomic-scale photonic devices, such as solar cells, modulators, photodetectors, and photocatalysts.


Optics Communications | 2014

Leaky mode engineering: A general design principle for dielectric optical antenna solar absorbers

Yiling Yu; Linyou Cao

Abstract We present a general principle for the rational design of dielectric optical antennas with optimal solar absorption enhancement: leaky mode engineering. This builds upon our previous study that demonstrates the solar absorption of a material with a given volume only dependent on the density and the radiative loss of leaky modes of the material. Here we systematically examine the correlation among the modal properties (density and radiative loss) of leaky modes, physical features, and solar absorption of dielectric antenna structures. Our analysis clearly points out the general guidelines for the design of dielectric optical antennas with optimal solar absorption enhancement: (a) using 0D structures; (b) the shape does not matter much; (c) heterostructuring with non-absorbing materials is a promising strategy; and (d) the design of a large-scale nanostructure array can use the solar absorption of single nanostructures as a reasonable reference.


Advanced Materials | 2016

Van der Waals Force Isolation of Monolayer MoS2.

Alper Gurarslan; Shuping Jiao; Tai-De Li; Guoqing Li; Yiling Yu; Yang Gao; Elisa Riedo; Zhi Ping Xu; Linyou Cao

Monolayer MoS2 can effectively screen the vdW interaction of underlying substrates with external systems by >90% because of the substantial increase in the separation between the substrate and external systems due to the presence of the monolayer. This substantial screening of vdW interactions by MoS2 monolayer is different from what reported at graphene.


Scientific Reports | 2015

Semiconductor Solar Superabsorbers

Yiling Yu; Lujun Huang; Linyou Cao

Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques.

Collaboration


Dive into the Yiling Yu's collaboration.

Top Co-Authors

Avatar

Linyou Cao

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Yifei Yu

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Lujun Huang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Kenan Gundogdu

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Alper Gurarslan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Chao Xu

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Andy Barrette

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Guoqing Li

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Liqin Su

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Yong Zhang

University of North Carolina at Charlotte

View shared research outputs
Researchain Logo
Decentralizing Knowledge