Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yimin Wu is active.

Publication


Featured researches published by Yimin Wu.


Nature | 2002

A proteomic view of the Plasmodium falciparum life cycle.

Laurence Florens; Michael P. Washburn; J. Dale Raine; Robert M. Anthony; Munira Grainger; J. David Haynes; J. Kathleen Moch; Nemone Muster; John B. Sacci; David L. Tabb; Adam A. Witney; Dirk Wolters; Yimin Wu; Malcolm J. Gardner; Anthony A. Holder; Robert E. Sinden; John R. Yates; Daniel J. Carucci

The completion of the Plasmodium falciparum clone 3D7 genome provides a basis on which to conduct comparative proteomics studies of this human pathogen. Here, we applied a high-throughput proteomics approach to identify new potential drug and vaccine targets and to better understand the biology of this complex protozoan parasite. We characterized four stages of the parasite life cycle (sporozoites, merozoites, trophozoites and gametocytes) by multidimensional protein identification technology. Functional profiling of over 2,400 proteins agreed with the physiology of each stage. Unexpectedly, the antigenically variant proteins of var and rif genes, defined as molecules on the surface of infected erythrocytes, were also largely expressed in sporozoites. The detection of chromosomal clusters encoding co-expressed proteins suggested a potential mechanism for controlling gene expression.


PLOS ONE | 2012

Mosquito Feeding Assays to Determine the Infectiousness of Naturally Infected Plasmodium falciparum Gametocyte Carriers

Teun Bousema; Rhoel R. Dinglasan; Isabelle Morlais; Louis C. Gouagna; Travis van Warmerdam; Parfait Awono-Ambene; Sarah Bonnet; Mouctar Diallo; Mamadou Coulibaly; Timoléon Tchuinkam; Bert Mulder; Geoff Targett; Chris Drakeley; Colin J. Sutherland; Vincent Robert; Ogobara K. Doumbo; Yeya Tiemoko Touré; Patricia M. Graves; Will Roeffen; Robert W. Sauerwein; Ashley Birkett; Emily Locke; Merribeth J. Morin; Yimin Wu; Thomas S. Churcher

Introduction In the era of malaria elimination and eradication, drug-based and vaccine-based approaches to reduce malaria transmission are receiving greater attention. Such interventions require assays that reliably measure the transmission of Plasmodium from humans to Anopheles mosquitoes. Methods We compared two commonly used mosquito feeding assay procedures: direct skin feeding assays and membrane feeding assays. Three conditions under which membrane feeding assays are performed were examined: assays with i) whole blood, ii) blood pellets resuspended with autologous plasma of the gametocyte carrier, and iii) blood pellets resuspended with heterologous control serum. Results 930 transmission experiments from Cameroon, The Gambia, Mali and Senegal were included in the analyses. Direct skin feeding assays resulted in higher mosquito infection rates compared to membrane feeding assays (odds ratio 2.39, 95% confidence interval 1.94–2.95) with evident heterogeneity between studies. Mosquito infection rates in membrane feeding assays and direct skin feeding assays were strongly correlated (p<0.0001). Replacing the plasma of the gametocyte donor with malaria naïve control serum resulted in higher mosquito infection rates compared to own plasma (OR 1.92, 95% CI 1.68–2.19) while the infectiousness of gametocytes may be reduced during the replacement procedure (OR 0.60, 95% CI 0.52–0.70). Conclusions Despite a higher efficiency of direct skin feeding assays, membrane feeding assays appear suitable tools to compare the infectiousness between individuals and to evaluate transmission-reducing interventions. Several aspects of membrane feeding procedures currently lack standardization; this variability makes comparisons between laboratories challenging and should be addressed to facilitate future testing of transmission-reducing interventions.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Sustained high-titer antibody responses induced by conjugating a malarial vaccine candidate to outer-membrane protein complex

Yimin Wu; Craig T. Przysiecki; Elizabeth Flanagan; Sheila N. Bello-Irizarry; Roxana Ionescu; Olga Muratova; Gelu Dobrescu; Lynn Lambert; David B. Keister; Yvette Rippeon; Carole A. Long; Li Shi; Michael P. Caulfield; Alan Shaw; Allan Saul; John W. Shiver; Louis H. Miller

The development of protein subunit vaccines to combat some of the worlds deadliest pathogens such as a malaria parasite, Plasmodium falciparum, is stalled, due in part to the inability to induce and sustain high-titer antibody responses. Here, we show the induction of persistent, high-titer antibody responses to recombinant Pfs25H, a human malarial transmission-blocking protein vaccine candidate, after chemical conjugation to the outer-membrane protein complex (OMPC) of Neisseria meningitidis serogroup B and adsorption to aluminum hydroxyphosphate. In mice, the Pfs25H-OMPC conjugate vaccine was >1,000 times more potent in generating anti-Pfs25H ELISA reactivity than a similar 0.5-μg dose of Pfs25H alone in Montanide ISA720, a water-in-oil adjuvant. The immune enhancement requires covalent conjugation between Pfs25H and the OMPC, given that physically mixed Pfs25H and OMPC on aluminum hydroxyphosphate failed to induce greater activity than the nonconjugated Pfs25H on aluminum hydroxyphosphate. The conjugate vaccine Pfs25H-OMPC also was highly immunogenic in rabbits and rhesus monkeys. In rhesus monkeys, the antibody responses were sustained over 18 months, at which time another vaccination with nonconjugated Pfs25H induced strong anamnestic responses. The vaccine-induced anti-Pfs25-specific antibodies in all animal species blocked the transmission of parasites to mosquitoes. Protein antigen conjugation to OMPC or other protein carrier may have general application to a spectrum of protein subunit vaccines to increase immunogenicity without the need for potentially reactogenic adjuvants.


Journal of Biological Chemistry | 2009

Structure of the Plasmodium falciparum Circumsporozoite Protein, a Leading Malaria Vaccine Candidate

Matthew Plassmeyer; Karine Reiter; Richard L. Shimp; Svetlana Kotova; Paul D. Smith; Darrell E. Hurt; Brent House; Xiaoyan Zou; Yanling Zhang; Merrit Hickman; Onyinyechukwu Uchime; Raul Herrera; Vu Thuong Nguyen; Jacqueline Glen; Jacob Lebowitz; Albert J. Jin; Louis H. Miller; Nicholas J. MacDonald; Yimin Wu; David L. Narum

The Plasmodium falciparum circumsporozoite protein (CSP) is critical for sporozoite function and invasion of hepatocytes. Given its critical nature, a phase III human CSP malaria vaccine trial is ongoing. The CSP is composed of three regions as follows: an N terminus that binds heparin sulfate proteoglycans, a four amino acid repeat region (NANP), and a C terminus that contains a thrombospondin-like type I repeat (TSR) domain. Despite the importance of CSP, little is known about its structure. Therefore, recombinant forms of CSP were produced by expression in both Escherichia coli (Ec) and then refolded (EcCSP) or in the methylotrophic yeast Pichia pastoris (PpCSP) for structural analyses. To analyze the TSR domain of recombinant CSP, conformation-dependent monoclonal antibodies that recognized unfixed P. falciparum sporozoites and inhibited sporozoite invasion of HepG2 cells in vitro were identified. These monoclonal antibodies recognized all recombinant CSPs, indicating the recombinant CSPs contain a properly folded TSR domain structure. Characterization of both EcCSP and PpCSP by dynamic light scattering and velocity sedimentation demonstrated that both forms of CSP appeared as highly extended proteins (Rh 4.2 and 4.58 nm, respectively). Furthermore, high resolution atomic force microscopy revealed flexible, rod-like structures with a ribbon-like appearance. Using this information, we modeled the NANP repeat and TSR domain of CSP. Consistent with the biochemical and biophysical results, the repeat region formed a rod-like structure about 21–25 nm in length and 1.5 nm in width. Thus native CSP appears as a glycosylphosphatidylinositol-anchored, flexible rod-like protein on the sporozoite surface.


Cell Host & Microbe | 2015

A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in aotus monkeys.

Alexander D. Douglas; G. Christian Baldeviano; Carmen Lucas; Luis Lugo-Roman; Cécile Crosnier; S. Josefin Bartholdson; Ababacar Diouf; Kazutoyo Miura; Lynn Lambert; Julio A. Ventocilla; Karina P. Leiva; Kathryn H. Milne; Joseph J. Illingworth; Alexandra J. Spencer; Kathryn A. Hjerrild; Daniel G. W. Alanine; Alison V. Turner; Jeromy T. Moorhead; Kimberly A. Edgel; Yimin Wu; Carole A. Long; Gavin J. Wright; Andres G. Lescano; Simon J. Draper

Summary Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Long-lasting and transmission-blocking activity of antibodies to Plasmodium falciparum elicited in mice by protein conjugates of Pfs25

Joanna Kubler-Kielb; Fathy Majadly; Yimin Wu; David L. Narum; Chunyan Guo; Louis H. Miller; Joseph Shiloach; John B. Robbins; Rachel Schneerson

Malaria is a leading cause of morbidity and mortality, estimated to cause >1 million childhood deaths annually. Plasmodium falciparum causes the most severe form of the disease. There is as yet no licensed vaccine for this disease, despite over a half century of research. In this study, we investigated a transmission-blocking vaccine candidate, the ookinete surface protein Pfs25. Antibodies against Pfs25, drawn in during a bite, can block parasite development in the mosquito midgut, preventing transmission to other individuals. Pfs25 is a low-molecular-weight protein, by itself not immunogenic. To increase its immunogenicity, we investigated several methods of conjugating Pfs25 to itself and to other proteins: recombinant Pseudomonas aeruginosa exotoxin A, and ovalbumin, using amide, hydrazone, or thioether linkages. All conjugates were immunogenic and induced booster responses in mice. The scheme to form amide bonds between proteins by using adipic acid dihydrizide as a linker produced the most immunogenic conjugates. Adsorption of the conjugates onto aluminum hydroxide further increased the antibody response. Remarkably, the antibody levels 3 or 7 months after the last injection were significantly higher than those 1 wk after that injection. The observed transmission-blocking activity of immune sera correlated with antibody levels measured by ELISA.


Infection and Immunity | 2005

Nasal Immunization with a Malaria Transmission-Blocking Vaccine Candidate, Pfs25, Induces Complete Protective Immunity in Mice against Field Isolates of Plasmodium falciparum

Takeshi Arakawa; Ai Komesu; Hitoshi Otsuki; Jetsumon Sattabongkot; Rachanee Udomsangpetch; Yasunobu Matsumoto; Naotoshi Tsuji; Yimin Wu; Motomi Torii; Takafumi Tsuboi

ABSTRACT Malaria transmission-blocking vaccines based on antigens expressed in sexual stages of the parasites are considered one promising strategy for malaria control. To investigate the feasibility of developing noninvasive mucosal transmission-blocking vaccines against Plasmodium falciparum, intranasal immunization experiments with Pichia pastoris-expressed recombinant Pfs25 proteins were conducted. Mice intranasally immunized with the Pfs25 proteins in the presence of a potent mucosal adjuvant cholera toxin induced robust systemic as well as mucosal antibodies. All mouse immunoglobulin G (IgG) subclasses except IgG3 were found in serum at comparable levels, suggesting that the immunization induced mixed Th1 and Th2 responses. Consistent with the expression patterns of the Pfs25 proteins in the parasites, the induced immune sera specifically recognized ookinetes but not gametocytes. In addition, the immune sera recognized Pfs25 proteins with the native conformation but not the denatured forms, indicating that mucosal immunization induced biologically active antibodies capable of recognizing conformational epitopes of native Pfs25 proteins. Feeding Anopheles dirus mosquitoes with a mixture of the mouse immune sera and gametocytemic blood derived from patients infected with P. falciparum resulted in complete interference with oocyst development in mosquito midguts. The observed transmission-blocking activities were strongly correlated with specific serum antibody titers. Our results demonstrated for the first time that a P. falciparum transmission-blocking vaccine candidate is effective against field-isolated parasites and may justify the investigation of noninvasive mucosal vaccination regimens for control of malaria, a prototypical mucosa-unrelated mosquito-borne parasitic disease.


PLOS ONE | 2011

Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909

Christopher J. A. Duncan; Susanne H. Sheehy; Katie Ewer; Alexander D. Douglas; Katharine A. Collins; Fenella D. Halstead; Sean C. Elias; Patrick J. Lillie; Kelly M. Rausch; Joan Aebig; Kazutoyo Miura; Nick J. Edwards; Ian D. Poulton; Angela Hunt-Cooke; David Porter; Fiona M. Thompson; Ros Rowland; Simon J. Draper; Sarah C. Gilbert; Michael P. Fay; Carole A. Long; Daming Zhu; Yimin Wu; Laura B. Martin; Charles Anderson; Alison M. Lawrie; Adrian V. S. Hill; Ruth D. Ellis

Background Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria. Methods In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes. Results A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = −0.93 [95% CI: −1.0, −0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = −0.93 [95% CI: −0.99, −0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5–9], control group median 9 days [range 7–9]). Conclusions Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers. Trial Registration ClinicalTrials.gov [NCT00984763]


Vaccine | 2013

Development of a Pfs25-EPA malaria transmission blocking vaccine as a chemically conjugated nanoparticle

Richard L. Shimp; Christopher Rowe; Karine Reiter; Beth Chen; Vu Nguyen; Joan Aebig; Kelly M. Rausch; Krishan Kumar; Yimin Wu; Albert J. Jin; David S. Jones; David L. Narum

Successful efforts to control infectious diseases have often required the use of effective vaccines. The current global strategy for control of malaria, including elimination and eradication will also benefit from the development of an effective vaccine that interrupts malaria transmission. To this end, a vaccine that disrupts malaria transmission within the mosquito host has been investigated for several decades targeting a 25 kDa ookinete specific surface protein, identified as Pfs25. Phase 1 human trial results using a recombinant Pfs25H/Montanide ISA51 formulation demonstrated that human Pfs25 specific antibodies block parasite infectivity to mosquitoes; however, the extent of blocking was likely insufficient for an effective transmission blocking vaccine. To overcome the poor immunogenicity, processes to produce and characterize recombinant Pfs25H conjugated to a detoxified form of Pseudomonas aeruginosa exoprotein A (EPA) have been developed and used to manufacture a cGMP pilot lot for use in human clinical trials. The Pfs25-EPA conjugate appears as a nanoparticle with an average molar mass in solution of approximately 600 kDa by static light scattering with an average diameter 20 nm (range 10-40 nm) by dynamic light scattering. The molar ratio of Pfs25H to EPA is about 3 to 1 by amino acid analysis, respectively. Outbred mice immunized with the Pfs25-EPA conjugated nanoparticle formulated on Alhydrogel(®) had a 75-110 fold increase in Pfs25H specific antibodies when compared to an unconjugated Pfs25H/Alhydrogel(®) formulation. A phase 1 human trial using the Pfs25-EPA/Alhydrogel(®) formulation is ongoing in the United States.


Human Vaccines | 2011

Antibodies to plant-produced Plasmodium falciparum sexual stage protein Pfs25 exhibit transmission blocking activity

Christine E. Farrance; Jessica A. Chichester; Konstantin Musiychuk; Moneim Shamloul; Amy Rhee; Slobodanka Manceva; R.M. Jones; T. Mamedov; Satish Sharma; Valentina Mett; Stephen J. Streatfield; Will Roeffen; M.G. van de Vegte-Bolmer; Robert W. Sauerwein; Yimin Wu; Olga Muratova; L. Miller; P. Duffy; R. Sinden; Vidadi Yusibov

Malaria is a serious and sometimes fatal mosquito-borne disease caused by a protozoan parasite. Each year, it is estimated that over one million people are killed by malaria, yet the disease is preventable and treatable. Developing vaccines against the parasite is a critical component in the fight against malaria and these vaccines can target different stages of the pathogen’s life cycle. We are targeting sexual stage proteins of P. falciparum which are found on the surface of the parasite reproductive cells present in the mosquito gut. Antibodies against these proteins block the progression of the parasite’s life cycle in the mosquito, and thus block transmission to the next human host. Transmission blocking vaccines are essential to the malaria eradication program to ease the disease burden at the population level. We have successfully produced multiple versions of the Pfs25 antigen in a plant virus-based transient expression system and have evaluated these vaccine candidates in an animal model. The targets are expressed in plants at a high level, are soluble and most importantly, generate strong transmission blocking activity as determined by a standard membrane feeding assay. These data demonstrate the feasibility of expressing Plasmodium antigens in a plant-based system for the economic production of a transmission blocking vaccine against malaria.

Collaboration


Dive into the Yimin Wu's collaboration.

Top Co-Authors

Avatar

David L. Narum

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carole A. Long

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kelly M. Rausch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Olga Muratova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patrick E. Duffy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ruth D. Ellis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kazutoyo Miura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nicholas J. MacDonald

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daming Zhu

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge