Yimon Aye
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yimon Aye.
Chemistry: A European Journal | 2009
Marcus J. Curtis‐Long; Yimon Aye
An up-to-date in-depth review of the current virtues and limitations in the realm of carbonyl addition reactions with allenyl-, propargyl-, and vinylsilicon reagents, encompassing numerous practical as well as pedagogical principles is presented. Comparisons of chemo-, regio-, and stereoselectivity and reactivity are drawn. Synthetic applications and challenges associated with each class of organosilane are discussed threading together the prospects of these green carbanion surrogates.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Yimon Aye; JoAnne Stubbe
Human ribonucleotide reductases (hRNRs) catalyze the conversion of nucleotides to deoxynucleotides and are composed of α- and β-subunits that form active αnβm (n, m = 2 or 6) complexes. α binds NDP substrates (CDP, UDP, ADP, and GDP, C site) as well as ATP and dNTPs (dATP, dGTP, TTP) allosteric effectors that control enzyme activity (A site) and substrate specificity (S site). Clofarabine (ClF), an adenosine analog, is used in the treatment of refractory leukemias. Its mode of cytotoxicity is thought to be associated in part with the triphosphate functioning as an allosteric inhibitor of hRNR. Studies on the mechanism of inhibition of hRNR by ClF di- and triphosphates (ClFDP and ClFTP) are presented. ClFTP is a reversible inhibitor (Ki = 40 nM) that rapidly inactivates hRNR. However, with time, 50% of the activity is recovered. D57N-α, a mutant with an altered A site, prevents inhibition by ClFTP, suggesting its A site binding. ClFDP is a slow-binding, reversible inhibitor (; t1/2 = 23 min). CDP protects α from its inhibition. The altered off-rate of ClFDP from E•ClFDP∗ by ClFTP (A site) or dGTP (S site) and its inhibition of D57N-α together implicate its C site binding. Size exclusion chromatography of hRNR or α alone with ClFDP or ClFTP, ± ATP or dGTP, reveals in each case that α forms a kinetically stable hexameric state. This is the first example of hexamerization of α induced by an NDP analog that reversibly binds at the active site.
Journal of Biological Chemistry | 2012
Yimon Aye; Marcus J. C. Long; JoAnne Stubbe
Background: Diferric-tyrosyl radical [(FeIII2-Y·)(FeIII2)] cofactor-bearing subunit (β2) of ribonucleotide reductase is targeted by a Phase-II cancer drug, Triapine (3-AP). Results: Y· loss precedes iron loss without reactive oxygen species formation. Conclusion: Fe(II)-(3-AP) inhibits β2 catalytically resulting in iron-loaded β2 with a reduced Y·. Significance: Susceptibility of β2 to inhibition via Y· reduction by metal complexes implicates a new avenue to develop RNR inhibitors. Triapine® (3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP)) is a drug in Phase II trials. One of its established cellular targets is the β2 subunit of ribonucleotide reductase that requires a diferric-tyrosyl-radical [(FeIII2-Y·)(FeIII2)] cofactor for de novo DNA biosynthesis. Several mechanisms for 3-AP inhibition of β2 have been proposed; one involves direct iron chelation from β2, whereas a second involves Y· destruction by reactive oxygen species formed in situ in the presence of O2 and reductant by Fe(II)-(3-AP). Inactivation of β2 can thus arise from cofactor destruction by loss of iron or Y·. In vitro kinetic data on the rates of 55Fe and Y· loss from [(55FeIII2-Y·)(55FeIII2)]-β2 under aerobic and anaerobic conditions reveal that Y· loss alone is sufficient for rapid β2 inactivation. OxyblotTM and mass spectrometric analyses of trypsin-digested inhibited β2, and lack of Y· loss from H2O2 and O2̇̄ treatment together preclude reactive oxygen species involvement in Y· loss. Three mammalian cell lines treated with 5 μm 3-AP reveal Y· loss and β2 inactivation within 30-min of 3-AP-exposure, analyzed by whole-cell EPR and lysate assays, respectively. Selective degradation of apo- over [(FeIII2-Y·)(FeIII2)]-β2 in lysates, similar iron-content in β2 immunoprecipitated from 3-AP-treated and untreated [55Fe]-prelabeled cells, and prolonged (12 h) stability of the inhibited β2 are most consistent with Y· loss being the predominant mode of inhibition, with β2 remaining iron-loaded and stable. A model consistent with in vitro and cell-based biochemical studies is presented in which Fe(II)-(3-AP), which can be cycled with reductant, directly reduces Y· of the [(FeIII2-Y·)(FeIII2)] cofactor of β2.
Journal of the American Chemical Society | 2013
Xinqiang Fang; Yuan Fu; Marcus J. C. Long; Joseph A. Haegele; Eva J. Ge; Saba Parvez; Yimon Aye
In-depth chemical understanding of complex biological processes hinges upon the ability to systematically perturb individual systems. However, current approaches to study impacts of biologically relevant reactive small molecules involve bathing of the entire cell or isolated organelle with excess amounts, leading to off-target effects. The resultant lack of biochemical specificity has plagued our understanding of how biological electrophiles mediate signal transduction or regulate responses that confer defense mechanisms to cellular electrophilic stress. Here we introduce a target-specific electrophile delivery platform that will ultimately pave the way to interrogate effects of reactive electrophiles on specific target proteins in cells. The new methodology is demonstrated by photoinducible targeted delivery of 4-hydroxynonenal (HNE) to the proteins Keap1 and PTEN. Covalent conjugation of the HNE-precursor to HaloTag fused to the target proteins enables directed HNE delivery upon photoactivation. The strategy provides proof of concept of selective delivery of reactive electrophiles to individual electrophile-responsive proteins in mammalian cells. It opens a new avenue enabling more precise determination of the pathophysiological consequences of HNE-induced chemical modifications on specific target proteins in cells.
Chemistry & Biology | 2012
Yimon Aye; Edward J. Brignole; Marcus J. C. Long; Johnathan Chittuluru; Catherine L. Drennan; Francisco J. Asturias; JoAnne Stubbe
Clofarabine (ClF) is a drug used in the treatment of leukemia. One of its primary targets is human ribonucleotide reductase (hRNR), a dual-subunit, (α(2))(m)(β(2))(n), regulatory enzyme indispensable in de novo dNTP synthesis. We report that, in live mammalian cells, ClF targets hRNR by converting its α-subunit into kinetically stable hexamers. We established mammalian expression platforms that enabled isolation of functional α and characterization of its altered oligomeric associations in response to ClF treatment. Size exclusion chromatography and electron microscopy documented persistence of in-cell-assembled-α(6). Our data validate hRNR as an important target of ClF, provide evidence that in vivo αs quaternary structure can be perturbed by a nonnatural ligand, and suggest small-molecule-promoted, persistent hexamerization as a strategy to modulate hRNR activity. These studies lay foundations for documentation of RNR oligomeric state within a cell.
Journal of the American Chemical Society | 2016
Marcus J. C. Long; Jesse R. Poganik; Yimon Aye
Proximity enhancement is a central chemical tenet underpinning an exciting suite of small-molecule toolsets that have allowed us to unravel many biological complexities. The leitmotif of this opus is “tethering”—a strategy in which a multifunctional small molecule serves as a template to bring proteins/biomolecules together. Scaffolding approaches have been powerfully applied to control diverse biological outcomes such as protein–protein association, protein stability, activity, and improve imaging capabilities. A new twist on this strategy has recently appeared, in which the small-molecule probe is engineered to unleash controlled amounts of reactive chemical signals within the microenvironment of a target protein. Modification of a specific target elicits a precisely timed and spatially controlled gain-of-function (or dominant loss-of-function) signaling response. Presented herein is a unique personal outlook conceptualizing the powerful proximity-enhanced chemical biology toolsets into two paradigms: “multifunctional scaffolding” versus “on-demand targeting”. By addressing the latest advances and challenges in the established yet constantly evolving multifunctional scaffolding strategies as well as in the emerging on-demand precision targeting (and related) systems, this Perspective is aimed at choosing when it is best to employ each of the two strategies, with an emphasis toward further promoting novel applications and discoveries stemming from these innovative chemical biology platforms.
Journal of the American Chemical Society | 2015
Saba Parvez; Yuan Fu; Jiayang Li; Marcus J. C. Long; Hong-Yu Lin; Dustin Lee; Gene S. Hu; Yimon Aye
Lipid-derived electrophiles (LDEs) that can directly modify proteins have emerged as important small-molecule cues in cellular decision-making. However, because these diffusible LDEs can modify many targets [e.g., >700 cysteines are modified by the well-known LDE 4-hydroxynonenal (HNE)], establishing the functional consequences of LDE modification on individual targets remains devilishly difficult. Whether LDE modifications on a single protein are biologically sufficient to activate discrete redox signaling response downstream also remains untested. Herein, using T-REX (targetable reactive electrophiles and oxidants), an approach aimed at selectively flipping a single redox switch in cells at a precise time, we show that a modest level (∼34%) of HNEylation on a single target is sufficient to elicit the pharmaceutically important antioxidant response element (ARE) activation, and the resultant strength of ARE induction recapitulates that observed from whole-cell electrophilic perturbation. These data provide the first evidence that single-target LDE modifications are important individual events in mammalian physiology.
Nature Chemical Biology | 2017
Marcus J. C. Long; Saba Parvez; Yi Zhao; Sanjna L. Surya; Yiran Wang; Sheng Zhang; Yimon Aye
Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal-personalized physiological responses.
ACS Chemical Biology | 2017
Marcus J. C. Long; Jesse R. Poganik; Souradyuti Ghosh; Yimon Aye
Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.
ACS Chemical Biology | 2016
Somsinee Wisitpitthaya; Yi Zhao; Marcus J. C. Long; Minxing Li; Elaine A. Fletcher; William A. Blessing; Robert S. Weiss; Yimon Aye
The enzyme ribonucleotide reductase (RNR) is a major target of anticancer drugs. Until recently, suicide inactivation in which synthetic substrate analogs (nucleoside diphosphates) irreversibly inactivate the RNR-α2β2 heterodimeric complex was the only clinically proven inhibition pathway. For instance, this mechanism is deployed by the multifactorial anticancer agent gemcitabine diphosphate. Recently reversible targeting of RNR-α-alone coupled with ligand-induced RNR-α-persistent hexamerization has emerged to be of clinical significance. To date, clofarabine nucleotides are the only known example of this mechanism. Herein, chemoenzymatic syntheses of the active forms of two other drugs, phosphorylated cladribine (ClA) and fludarabine (FlU), allow us to establish that reversible inhibition is common to numerous drugs in clinical use. Enzyme inhibition and fluorescence anisotropy assays show that the di- and triphosphates of the two nucleosides function as reversible (i.e., nonmechanism-based) inhibitors of RNR and interact with the catalytic (C site) and the allosteric activity (A site) sites of RNR-α, respectively. Gel filtration, protease digestion, and FRET assays demonstrate that inhibition is coupled with formation of conformationally diverse hexamers. Studies in 293T cells capable of selectively inducing either wild-type or oligomerization-defective mutant RNR-α overexpression delineate the central role of RNR-α oligomerization in drug activity, and highlight a potential resistance mechanism to these drugs. These data set the stage for new interventions targeting RNR oligomeric regulation.