Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yin-Hung Lin is active.

Publication


Featured researches published by Yin-Hung Lin.


Mutation Research | 2015

Identification of a novel GATA3 mutation in a deaf Taiwanese family by massively parallel sequencing

Yin-Hung Lin; Chen-Chi Wu; Tun-Yen Hsu; Wei-Yih Chiu; Chuan-Jen Hsu; Pei-Lung Chen

Recent studies have confirmed the utility of massively parallel sequencing (MPS) in addressing genetically heterogeneous hereditary hearing impairment. By applying a MPS diagnostic panel targeting 129 known deafness genes, we identified a novel frameshift GATA3 mutation, c.149delT (p.Phe51LeufsX144), in a hearing-impaired family compatible with autosomal dominant inheritance. The GATA3 haploinsufficiency is thought to be associated with the hypoparathyroidism, sensorineural deafness, and renal dysplasia (HDR) syndrome. The pathogenicity of GATA3 c.149delT was supported by its absence in the 5400 NHLBI exomes, 1000 Genomes, and the 100 normal hearing controls of the present study; the co-segregation of c.149delT heterozygosity with hearing impairment in 9 affected members of the family; as well as the nonsense-mediated mRNA decay of the mutant allele in in vitro functional studies. The phenotypes in this family appeared relatively mild, as most affected members presented no signs of hypoparathyroidism or renal abnormalities, including the proband. To our knowledge, this is the first report of genetic diagnosis of HDR syndrome before the clinical diagnosis. Genetic examination for multiple deafness genes with MPS might be helpful in identifying certain types of syndromic hearing loss such as HDR syndrome, contributing to earlier diagnosis and treatment of the affected individuals.


PLOS ONE | 2013

Application of massively parallel sequencing to genetic diagnosis in multiplex families with idiopathic sensorineural hearing impairment.

Chen-Chi Wu; Yin-Hung Lin; Ying-Chang Lu; Pei-Jer Chen; Wei-Shiung Yang; Chuan-Jen Hsu; Pei-Lung Chen

Despite the clinical utility of genetic diagnosis to address idiopathic sensorineural hearing impairment (SNHI), the current strategy for screening mutations via Sanger sequencing suffers from the limitation that only a limited number of DNA fragments associated with common deafness mutations can be genotyped. Consequently, a definitive genetic diagnosis cannot be achieved in many families with discernible family history. To investigate the diagnostic utility of massively parallel sequencing (MPS), we applied the MPS technique to 12 multiplex families with idiopathic SNHI in which common deafness mutations had previously been ruled out. NimbleGen sequence capture array was designed to target all protein coding sequences (CDSs) and 100 bp of the flanking sequence of 80 common deafness genes. We performed MPS on the Illumina HiSeq2000, and applied BWA, SAMtools, Picard, GATK, Variant Tools, ANNOVAR, and IGV for bioinformatics analyses. Initial data filtering with allele frequencies (<5% in the 1000 Genomes Project and 5400 NHLBI exomes) and PolyPhen2/SIFT scores (>0.95) prioritized 5 indels (insertions/deletions) and 36 missense variants in the 12 multiplex families. After further validation by Sanger sequencing, segregation pattern, and evolutionary conservation of amino acid residues, we identified 4 variants in 4 different genes, which might lead to SNHI in 4 families compatible with autosomal dominant inheritance. These included GJB2 p.R75Q, MYO7A p.T381M, KCNQ4 p.S680F, and MYH9 p.E1256K. Among them, KCNQ4 p.S680F and MYH9 p.E1256K were novel. In conclusion, MPS allows genetic diagnosis in multiplex families with idiopathic SNHI by detecting mutations in relatively uncommon deafness genes.


Laryngoscope | 2012

Mutation screening of the EYA1, SIX1, and SIX5 genes in an east asian cohort with branchio‐oto‐renal syndrome

Shih-Hao Wang; Chen-Chi Wu; Ying-Chang Lu; Yin-Hung Lin; Yi-Ning Su; Wuh-Liang Hwu; I-Shing Yu; Chuan-Jen Hsu

To explore the genetic characteristics of branchio‐oto‐renal (BOR) syndrome in an East Asian population.


Medicine | 2015

Identifying Children With Poor Cochlear Implantation Outcomes Using Massively Parallel Sequencing

Chen-Chi Wu; Yin-Hung Lin; Tien-Chen Liu; Kai-Nan Lin; Wei-Shiung Yang; Chuan-Jen Hsu; Pei-Lung Chen; Che-Ming Wu

AbstractCochlear implantation is currently the treatment of choice for children with severe to profound hearing impairment. However, the outcomes with cochlear implants (CIs) vary significantly among recipients. The purpose of the present study is to identify the genetic determinants of poor CI outcomes. Twelve children with poor CI outcomes (the “cases”) and 30 “matched controls” with good CI outcomes were subjected to comprehensive genetic analyses using massively parallel sequencing, which targeted 129 known deafness genes. Audiological features, imaging findings, and auditory/speech performance with CIs were then correlated to the genetic diagnoses. We identified genetic variants which are associated with poor CI outcomes in 7 (58%) of the 12 cases; 4 cases had bi-allelic PCDH15 pathogenic mutations and 3 cases were homozygous for the DFNB59 p.G292R variant. Mutations in the WFS1, GJB3, ESRRB, LRTOMT, MYO3A, and POU3F4 genes were detected in 7 (23%) of the 30 matched controls. The allele frequencies of PCDH15 and DFNB59 variants were significantly higher in the cases than in the matched controls (both P < 0.001). In the 7 CI recipients with PCDH15 or DFNB59 variants, otoacoustic emissions were absent in both ears, and imaging findings were normal in all 7 implanted ears. PCDH15 or DFNB59 variants are associated with poor CI performance, yet children with PCDH15 or DFNB59 variants might show clinical features indistinguishable from those of other typical pediatric CI recipients. Accordingly, genetic examination is indicated in all CI candidates before operation.


Genetics in Medicine | 2017

Newborn genetic screening for hearing impairment: a population-based longitudinal study

Chen-Chi Wu; Ching-Hui Tsai; Chia-Cheng Hung; Yin-Hung Lin; Yi-Hsin Lin; Fang-Li Huang; Po-Nien Tsao; Yi-Ning Su; Yungling Leo Lee; Wu-Shiun Hsieh; Chuan-Jen Hsu

Purpose:The feasibility of genetic screening for deafness-causing mutations in newborns has been reported in several studies. The aim of this study was to investigate the long-term results in those who screened positive for deafness mutations; these results are crucial to determine the cost-effectiveness to justify population-wide genetic screening.Methods:We performed simultaneous hearing screening and genetic screening targeting four common deafness mutations (p.V37I and c.235delC of GJB2, c.919-2A>G of SLC26A4, and the mitochondrial m.1555A>G) in 5173 newborns at a tertiary hospital between 2009 and 2015. Serial audiometric results up to 6 years old were then analyzed in children with conclusive genotypes.Results:Newborn genetic screening identified 82 (1.6%) babies with conclusive genotypes, comprising 62 (1.2%) with GJB2 p.V37I/p.V37I, 16 (0.3%) with GJB2 p.V37I/c.235delC, and 4 (0.1%) with m.1555A>G. Of these, 46 (56.1%) passed hearing screening at birth. Long-term follow-up demonstrated progressive hearing loss in children with the GJB2 p.V37I/p.V37I and p.V37I/c.235delC genotypes; this hearing loss deteriorated by approximately 1 decibel hearing level (dBHL) per year.Conclusions:We delineated the longitudinal auditory features of the highly prevalent GJB2 p.V37I mutation on a general population basis and confirmed the utility of newborn genetic screening in identifying infants with late-onset or progressive hearing impairment undetectable by newborn hearing screening.Genet Med 19 1, 6–12.


PLOS ONE | 2015

Long-Term Cochlear Implant Outcomes in Children with GJB2 and SLC26A4 Mutations.

Che-Ming Wu; Hui-Chen Ko; Yung-Ting Tsou; Yin-Hung Lin; Ju-Li Lin; Chin-Kuo Chen; Pei-Lung Chen; Chen-Chi Wu

Objectives To investigate speech and language outcomes in children with cochlear implants (CIs) who had mutations in common deafness genes and to compare their performances with those without mutations. Study Design Prospective study. Methods Patients who received CIs before 18 years of age and had used CIs for more than 3 years were enrolled in this study. All patients underwent mutation screening of three common deafness genes: GJB2, SLC26A4 and the mitochondrial 12S rRNA gene. The outcomes with CIs were assessed at post-implant years 3 and 5 using the Categories of Auditory Performance (CAP) scale, Speech Intelligibility Rating (SIR) scale, speech perception tests and language skill tests. Results Forty-eight patients were found to have confirmative mutations in GJB2 or SLC26A4, and 123 without detected mutations were ascertained for comparison. Among children who received CIs before 3.5 years of age, patients with GJB2 or SLC26A4 mutations showed significantly higher CAP/SIR scores than those without mutations at post-implant year 3 (p = 0.001 for CAP; p = 0.004 for SIR) and year 5 (p = 0.035 for CAP; p = 0.038 for SIR). By contrast, among children who received CIs after age 3.5, no significant differences were noted in post-implant outcomes between patients with and without mutations (all p > 0.05). Conclusion GJB2 and SLC26A4 mutations are associated with good post-implant outcomes. However, their effects on CI outcomes may be modulated by the age at implantation: the association between mutations and CI outcomes is observed in young recipients who received CIs before age 3.5 years but not in older recipients.


PLOS ONE | 2013

Differences in the pathogenicity of the p.H723R mutation of the common deafness-associated SLC26A4 gene in humans and mice.

Ying-Chang Lu; Chen-Chi Wu; Ting-Hua Yang; Yin-Hung Lin; I-Shing Yu; Shu-Wha Lin; Qing Chang; Xi Lin; Jau-Min Wong; Chuan-Jen Hsu

Mutations in the SLC26A4 gene are a common cause of human hereditary hearing impairment worldwide. Previous studies have demonstrated that different SLC26A4 mutations have different pathogenetic mechanisms. By using a genotype-driven approach, we established a knock-in mouse model (i.e., Slc26a4tm2Dontuh/tm2Dontuh mice) homozygous for the common p.H723R mutation in the East Asian population. To verify the pathogenicity of the p.H723R allele in mice, we further generated mice with compound heterozygous mutations (i.e., Slc26a4tm1Dontuh/tm2Dontuh) by intercrossing Slc26a4+/tm2Dontuh mice with Slc26a4tm1Dontuh/tm1Dontuh mice, which segregated the c.919-2A>G mutation with an abolished Slc26a4 function. Mice were then subjected to audiologic assessments, a battery of vestibular evaluations, inner ear morphological studies, and noise exposure experiments. The results were unexpected; both Slc26a4tm2Dontuh/tm2Dontuh and Slc26a4tm1Dontuh/tm2Dontuh mice showed normal audiovestibular phenotypes and inner ear morphology, and they did not show significantly higher shifts in hearing thresholds after noise exposure than the wild-type mice. The results indicated not only the p.H723R allele was non-pathogenic in mice, but also a single p.H723R allele was sufficient to maintain normal inner ear physiology in heterozygous compound mice. There might be discrepancies in the pathogenicity of specific SLC26A4 mutations in humans and mice; therefore, precautions should be taken when extrapolating the results of animal studies to humans.


Scientific Reports | 2017

A novel missense variant in the nuclear localization signal of POU4F3 causes autosomal dominant non-syndromic hearing loss

Yin-Hung Lin; Yi-Hsin Lin; Ying-Chang Lu; Tien-Chen Liu; Chien-Yu Chen; Chuan-Jen Hsu; Pei-Lung Chen; Chen-Chi Wu

Autosomal dominant non-syndromic hearing loss (ADNSHL) is genetically heterogeneous with more than 35 genes identified to date. Using a massively parallel sequencing panel targeting 159 deafness genes, we identified a novel missense variant of POU4F3 (c.982A>G, p.Lys328Glu) which co-segregated with the deafness phenotype in a three-generation Taiwanese family with ADNSHL. This variant could be classified as a “pathogenic variant” according to the American College of Medical Genetics and Genomics guidelines. We then performed subcellular localization experiments and confirmed that p.Lys328Glu compromised transportation of POU4F3 from the cytoplasm to the nucleus. POU3F4 p.Lys328Glu was located within a bipartite nuclear localization signal (NLS), and was the first missense variant in bipartite NLS of POU4F3 validated in functional studies. These findings expanded the mutation spectrum of POU4F3 and provided insight into the pathogenesis associated with aberrant POU4F3 localization.


Neurobiology of Aging | 2015

Contribution of adiponectin and its type 1 receptor to age-related hearing impairment

Chen-Chi Wu; Ching-Hui Tsai; Ying-Chang Lu; Hsiao-Chun Lin; Juen-Haur Hwang; Yin-Hung Lin; Wei-Shiung Yang; Pei-Jer Chen; Wei-Chih Liao; Yungling Leo Lee; Tien-Chen Liu; Chuan-Jen Hsu

Age-related hearing impairment (ARHI) is a complex neurodegenerative disorder caused by a combination of environmental and genetic factors. We have reported previously that obesity increases the risk for ARHI, and that plasma levels of adiponectin are associated with ARHI. In the present study, we further explored the role of adiponectin in the pathophysiology of ARHI by investigating the genotypes of ADIPOQ and ADIPOR1, the genes of adiponectin and its type 1 receptor, respectively. A total of 1682 volunteers were enrolled, and their audiological phenotypes were determined according to the z scores converted from their original frequency-specific hearing thresholds. A total of 9 tag-single nucleotide polymorphisms (tagSNPs) in ADIPOQ and 4 tagSNPs in ADIPOR1 were genotyped, and the genotypes were correlated to the audiological phenotypes under the assumption of various inheritance models. Significant associations were identified between certain ADIPOQ tagSNPs and z scores under dominant, codominant, or additive models, whereas no association was identified between ADIPOR1 tagSNPs and z scores. The associations between ADIPOQ tagSNPs and z scores appear to exist only in subjects with specific ADIPOR1 genotypes, indicating an interaction between adiponectin and AdipoR1. Measurement of plasma adiponectin in 736 subjects revealed that ADIPOQ genotypes might exert their effects on hearing levels via modulation of plasma adiponectin levels. Subsequently, we confirmed the expression of AdipoR1 in the inner ear of mice, and demonstrated antiapoptotic effects of adiponectin in cochlear explant cultures. These results provide insights into the physiological function and potential clinical implications of adiponectin against ARHI.


Archives of Otolaryngology-head & Neck Surgery | 2017

Etiologic and Audiologic Characteristics of Patients With Pediatric-Onset Unilateral and Asymmetric Sensorineural Hearing Loss

Pei-Hsuan Lin; Chuan-Jen Hsu; Yi-Hsin Lin; Yin-Hung Lin; Hui-Yu Lee; Chen-Chi Wu; Tien-Chen Liu

Importance Pediatric-onset unilateral and asymmetric sensorineural hearing loss (SNHL) is a common condition, but in most patients, the cause remains unclear; thus, determination of the hearing outlook is difficult. Objective To analyze the etiologic and audiologic characteristics of pediatric-onset unilateral and asymmetric SNHL. Design, Setting, and Participants In this retrospective cohort study performed from January 1, 2008, through December 31, 2016, patients at a tertiary referral center who were diagnosed with pediatric-onset unilateral or asymmetric SNHL were divided into 3 groups according to their hearing levels: unilateral hearing loss with scaled-out levels (UHL-SO), unilateral hearing loss with residual hearing (UHL-RH), and asymmetric hearing loss (AHL). Main Outcomes and Measures Basic demographic data, family and medical histories, audiologic results, imaging findings, and genetic results were ascertained and compared among patients of the 3 groups. Results A total of 133 patients (mean [SD] age, 9.1 [10.9] years; 63 [47.4%] male and 70 [52.6%] female), including 50 with UHL-SO, 42 with UHL-RH, and 41 with AHL, were enrolled for analyses. Of 50 patients with UHL-SO, 49 (98.0%) had stable hearing levels with time, whereas 10 of 42 patients with UHL-RH (23.8%) and 18 of 41 patients with AHL (43.9%) revealed progressive or fluctuating hearing loss. Inner ear malformations detected with temporal bone high-resolution computed tomography, particularly cochlear aperture stenosis, were detected at higher rates in patients with UHL-SO (9 of 31 [29.0%]) and UHL-RH (6 of 24 [25.0%]) than in those with AHL (1 of 30 [3.3%]). In contrast, screening for mutations in 3 common deafness genes—GJB2, SLC26A4, and MTRNR1—achieved definite diagnosis in a higher percentage of patients with AHL (10 of 37 [27.0%]) than patients with UHL-SO (0 of 33) and UHL-RH (1 of 25 [4.0%]). Conclusions and Relevance The UHL-SO and UHL-RH conditions share a common or similar etiopathogenesis different from that of AHL. Imaging studies and genetic testing might be prioritized during the respective general etiologic workups for patients with UHL and AHL. Regular hearing checkups are warranted for patients with UHL and AHL because a certain proportion of patients might sustain progression in SNHL.

Collaboration


Dive into the Yin-Hung Lin's collaboration.

Top Co-Authors

Avatar

Chen-Chi Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chuan-Jen Hsu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Pei-Lung Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Ying-Chang Lu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Tien-Chen Liu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yi-Hsin Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Ching-Hui Tsai

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Wei-Shiung Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yi-Ning Su

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Yungling Leo Lee

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge