Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yin-Ru Chiang is active.

Publication


Featured researches published by Yin-Ru Chiang.


Journal of Bacteriology | 2008

Study of Anoxic and Oxic Cholesterol Metabolism by Sterolibacterium denitrificans

Yin-Ru Chiang; Wael Ismail; Dimitri Heintz; Christine Schaeffer; Alain Van Dorsselaer; Georg Fuchs

The initial enzymes and genes involved in the anoxic metabolism of cholesterol were studied in the denitrifying bacterium Sterolibacterium denitrificans Chol-1S(T). The second enzyme of the proposed pathway, cholest-4-en-3-one-Delta1-dehydrogenase (AcmB), was partially purified. Based on amino acid sequence analysis, a gene probe was derived to screen a cosmid library of chromosomal DNA for the acmB gene. A positive clone comprising a 43-kbp DNA insert was sequenced. In addition to the acmB gene, the DNA fragment harbored the acmA gene, which encodes the first enzyme of the pathway, cholesterol dehydrogenase/isomerase. The acmA gene was overexpressed, and the recombinant dehydrogenase/isomerase was purified. This enzyme catalyzes the predicted transformation of cholesterol to cholest-4-en-3-one. S. denitrificans cells grown aerobically with cholesterol exhibited the same pattern of soluble proteins and cell extracts formed the same 14C-labeled products from [14C]cholesterol as cells that were grown under anoxic, denitrifying conditions. This is especially remarkable for the late products that are formed by anaerobic hydroxylation of the cholesterol side chain with water as the oxygen donor. Hence, this facultative anaerobic bacterium may use the anoxic pathway lacking any oxygenase-dependent reaction also under oxic conditions. This confers metabolic flexibility to such facultative anaerobic bacteria.


Journal of Biological Chemistry | 2007

Initial Steps in the Anoxic Metabolism of Cholesterol by the Denitrifying Sterolibacterium denitrificans

Yin-Ru Chiang; Wael Ismail; Michael Müller; Georg Fuchs

The anoxic metabolism of the ubiquitous triterpene cholesterol is challenging because of its complex chemical structure, low solubility in water, low number of active functional groups, and the presence of four alicyclic rings and two quaternary carbon atoms. Consequently, the aerobic metabolism depends on oxygenase catalyzed reactions requiring molecular oxygen as co-substrate. Sterolibacterium denitrificans is shown to metabolize cholesterol anoxically via the oxidation of ring A, followed by an oxygen-independent hydroxylation of the terminal C-25 of the side chain. The anaerobic hydroxylation of a tertiary carbon using water as oxygen donor is unprecedented and may be catalyzed by a novel molybdenum containing enzyme.


Applied and Environmental Microbiology | 2008

Cholest-4-en-3-one-δ1-dehydrogenase: A flavoprotein catalyzing the second step in anoxic cholesterol metabolism

Yin-Ru Chiang; Wael Ismail; Sébastien Gallien; Dimitri Heintz; Alain Van Dorsselaer; Georg Fuchs

ABSTRACT The anoxic metabolism of cholesterol was studied in the denitrifying bacterium Sterolibacterium denitrificans, which was grown with cholesterol and nitrate. Cholest-4-en-3-one was identified before as the product of cholesterol dehydrogenase/isomerase, the first enzyme of the pathway. The postulated second enzyme, cholest-4-en-3-one-Δ1-dehydrogenase, was partially purified, and its N-terminal amino acid sequence and tryptic peptide sequences were determined. Based on this information, the corresponding gene was amplified and cloned and the His-tagged recombinant protein was overproduced, purified, and characterized. The recombinant enzyme catalyzes the expected Δ1-desaturation (cholest-4-en-3-one to cholesta-1,4-dien-3-one) under anoxic conditions. It contains approximately one molecule of FAD per 62-kDa subunit and forms high molecular aggregates in the absence of detergents. The enzyme accepts various artificial electron acceptors, including dichlorophenol indophenol and methylene blue. It oxidizes not only cholest-4-en-3-one, but also progesterone (with highest catalytic efficiency, androst-4-en-3,17-dione, testosterone, 19-nortestosterone, and cholest-5-en-3-one. Two steroids, corticosterone and estrone, act as competitive inhibitors. The dehydrogenase resembles 3-ketosteroid-Δ1-dehydrogenases from other organisms (highest amino acid sequence identity with that from Pseudoalteromonas haloplanktis), with some interesting differences. Due to its catalytic properties, the enzyme may be useful in steroid transformations.


Journal of Bacteriology | 2011

A Novel Testosterone Catabolic Pathway in Bacteria

Yann-Lii Leu; Po-Hsiang Wang; Ming-Shi Shiao; Wael Ismail; Yin-Ru Chiang

Forty years ago, Coulter and Talalay (A. W. Coulter and P. Talalay, J. Biol. Chem. 243:3238-3247, 1968) established the oxygenase-dependent pathway for the degradation of testosterone by aerobes. The oxic testosterone catabolic pathway involves several oxygen-dependent reactions and is not available for anaerobes. Since then, a variety of anaerobic bacteria have been described for the ability to degrade testosterone in the absence of oxygen. Here, a novel, oxygenase-independent testosterone catabolic pathway in such organisms is described. Steroidobacter denitrificans DSMZ18526 was shown to be capable of degrading testosterone in the absence of oxygen and was selected as the model organism in this study. In a previous investigation, we identified the initial intermediates involved in an anoxic testosterone catabolic pathway, most of which are identical to those of the oxic pathway demonstrated in Comamonas testosteroni. In this study, five additional intermediates of the anoxic pathway were identified. We demonstrated that subsequent steps of the anoxic pathway greatly differ from those of the established oxic pathway, which suggests that a novel pathway for testosterone catabolism is present. In the proposed anoxic pathway, a reduction reaction occurs at C-4 and C-5 of androsta-1,4-diene-3,17-dione, the last common intermediate of both the oxic and anoxic pathways. After that, a novel hydration reaction occurs and a hydroxyl group is thus introduced to the C-1α position of C(19)steroid substrates. To our knowledge, an enzymatic hydration reaction occurring at the A ring of steroid compounds has not been reported before.


Journal of Lipid Research | 2013

Anaerobic and aerobic cleavage of the steroid core ring structure by Steroidobacter denitrificans

Po-Hsiang Wang; Yann-Lii Leu; Wael Ismail; Sen-Lin Tang; Ching-Yen Tsai; Hsing-Ju Chen; Ann-Tee Kao; Yin-Ru Chiang

The aerobic degradation of steroids by bacteria has been studied in some detail. In contrast, only little is known about the anaerobic steroid catabolism. Steroidobacter denitrificans can utilize testosterone under both oxic and anoxic conditions. By conducting metabolomic investigations, we demonstrated that S. denitrificans adopts the 9,10-seco-pathway to degrade testosterone under oxic conditions. This pathway depends on the use of oxygenases for oxygenolytic ring fission. Conversely, the detected degradation intermediates under anoxic conditions suggest a novel, oxygenase-independent testosterone catabolic pathway, the 2,3-seco-pathway, which differs significantly from the aerobic route. In this anaerobic pathway, testosterone is first transformed to 1-dehydrotestosterone, which is then reduced to produce 1-testosterone followed by water addition to the C-1/C-2 double bond of 1-testosterone. Subsequently, the C-1 hydroxyl group is oxidized to produce 17-hydroxy-androstan-1,3-dione. The A-ring of this compound is cleaved by hydrolysis as evidenced by H218O-incorporation experiments. Regardless of the growth conditions, testosterone is initially transformed to 1-dehydrotestosterone. This intermediate is a divergence point at which the downstream degradation pathway is governed by oxygen availability. Our results shed light into the previously unknown cleavage of the sterane ring structure without oxygen. We show that, under anoxic conditions, the microbial cleavage of steroidal core ring system begins at the A-ring.


Journal of Bioremediation and Biodegradation | 2011

Oxic and Anoxic Metabolism of Steroids by Bacteria

Wael Ismail; Yin-Ru Chiang

1 -dehydrogenase; AcmC: Cholest-4-en-3- one Hydroxylase; AD: Androst-4-en-3,17-Dione; ADD: Androsta-1,4- Diene-3,17-Dione; APCI: atmospheric pressure chemical ionization; CoA: Coenzyme A; ESI: Electrospray Ionization; KSTD: 3-Ketosteroid- Δ 1 -Dehydrogenase; LC-APCI-MS: Liquid Chromatography- Atmospheric Pressure Chemical Ionization-Mass Spectrometry; SDR: Short-chain Dehydrogenase/Reductase superfamily; Sli: Sterolibacterium; Sdo: Steroidobacter. Abstract Steroid compounds are produced by eukaryotes where they have a variety of chemical structures and play important physiological roles. Many bacteria are capable of transforming and completely degrading steroids under various growth conditions. The microbial metabolism of steroids has gained considerable interest due to its potential applications in industrial and environmental biotechnology. The oxic degradation pathways of steroids and some of the involved enzymes are well characterized. The key players in these pathways are oxygenases which depend on dioxygen as a co-substrate. On the contrary, much less is known about the mechanisms operating under anoxic conditions. Obviously, anoxic bacterial metabolism of steroids should proceed via oxygenase-independent reactions. So far, a few bacteria that can completely degrade steroids in the absence of oxygen were characterized. Surprisingly, all of them belong to denitrifying bacteria and utilize only nitrate as the alternative electron acceptor. Recent studies of anoxic metabolism of steroids using denitrifying bacteria revealed unique and interesting biochemical reactions and enzymes. Here we discuss the current understanding of the biochemistry and molecular biology of bacterial steroid metabolism under anoxic conditions. The aerobic metabolism of steroids is briefly presented for the sake of comparison. Future investigations on anoxic metabolism of steroids will unravel novel aspects of the regulation and evolution of catabolic pathways as well as unprecedented biocatalysts with useful applications in biotechnology.


Journal of Biological Chemistry | 2010

The Small Heat-shock Protein HspL Is a VirB8 Chaperone Promoting Type IV Secretion-mediated DNA Transfer

Yun-Long Tsai; Yin-Ru Chiang; Franz Narberhaus; Christian Baron; Erh-Min Lai

Agrobacterium tumefaciens is a plant pathogen that utilizes a type IV secretion system (T4SS) to transfer DNA and effector proteins into host cells. In this study we discovered that an α-crystallin type small heat-shock protein (α-Hsp), HspL, is a molecular chaperone for VirB8, a T4SS assembly factor. HspL is a typical α-Hsp capable of protecting the heat-labile model substrate citrate synthase from thermal aggregation. It forms oligomers in a concentration-dependent manner in vitro. Biochemical fractionation revealed that HspL is mainly localized in the inner membrane and formed large complexes with certain VirB protein subassemblies. Protein-protein interaction studies indicated that HspL interacts with VirB8, a bitopic integral inner membrane protein that is essential for T4SS assembly. Most importantly, HspL is able to prevent the aggregation of VirB8 fused with glutathione S-transferase in vitro, suggesting that it plays a role as VirB8 chaperone. The chaperone activity of two HspL variants with amino acid substitutions (F98A and G118A) for both citrate synthase and glutathione S-transferase-VirB8 was reduced and correlated with HspL functions in T4SS-mediated DNA transfer and virulence. This study directly links in vitro and in vivo functions of an α-Hsp and reveals a novel α-Hsp function in T4SS stability and bacterial virulence.


Molecules | 2013

An In Vitro Study of the Antimicrobial Effects of Indigo Naturalis Prepared from Strobilanthes formosanus Moore

Yin-Ru Chiang; Ann Li; Yann-Lii Leu; Jia-You Fang; Yin-Ku Lin

Indigo naturalis is effective in treating nail psoriasis coexisting with microorganism infections. This study examines the antimicrobial effects of indigo naturalis prepared from Strobilanthes formosanus Moore. Eight bacterial and seven fungal strains were assayed using the agar diffusion method to examine the effects of indigo naturalis and its bioactive compounds. The bioactive compounds of indigo naturalis were purified sequentially using GFC, TLC, and HPLC. Their structures were identified using mass spectrometry and NMR spectroscopy. UPLC-MS/MS was applied to compare the metabolome profiles of indigo naturalis ethyl-acetate (EA) extract and its source plant, Strobilanthes formosanus Moore. The results of in vitro antimicrobial assays showed that indigo naturalis EA-extract significantly (≥1 mg/disc) inhibits Gram-positive bacteria (Staphylococcus aureus, S. epidermis and methicillin-resistant S. aureus (MRSA)) and mildly inhibits non-dermatophytic onychomycosis pathogens (Aspergillus fumigates and Candida albicans), but has little effect on dermatophyes. Isatin and tryptanthrin were identified as the bioactive compounds of indigo naturalis using S. aureus and S. epidermis as the bioassay model. Both bioactive ingredients had no effect on all tested fungi. In summary, indigo naturalis prepared from Strobilanthes formosanus Moore exhibits antimicrobial effects on Staphylococcus and non-dermatophytic onychomycosis pathogens. Tryptanthrin and isatin may be its major bioactive ingredients against Staphylococcus and the inhibitory effect on MRSA may be due to other unidentified ingredients.


Microbiology | 2010

Initial steps in anoxic testosterone degradation by Steroidobacter denitrificans.

Yin-Ru Chiang; Jia-You Fang; Wael Ismail; Po-Hsiang Wang

Steroid compounds have many important physiological activities in higher organisms. Testosterone and related steroids are important environmental contaminants that disrupt the endocrine systems of animals. The degradation of steroids, especially under anoxic conditions, is challenging because of their complex chemical structure. A denitrifying gamma-proteobacterium, Steroidobacter denitrificans, able to grow anaerobically on a variety of steroids as the sole carbon and energy source was adopted as a model organism to study the anoxic degradation of testosterone. We identified the initial intermediates involved in the anoxic testosterone degradation pathway of S. denitrificans. We demonstrated that under anoxic conditions, S. denitrificans initially oxidizes testosterone to 1-dehydrotestosterone, which is then transformed to androsta-1,4-diene-3,17-dione. In addition, it seems that androst-4-en-3,17-dione can also be directly produced from testosterone by S. denitrificans cells. In general, the initial steps of anoxic testosterone degradation by S. denitrificans are similar to those of the oxic pathway demonstrated in Comamonas testosteroni.


The ISME Journal | 2016

Integrated multi-omics analyses reveal the biochemical mechanisms and phylogenetic relevance of anaerobic androgen biodegradation in the environment.

Fu-Chun Yang; Yi-Lung Chen; Sen-Lin Tang; Chang-Ping Yu; Po-Hsiang Wang; Wael Ismail; Chia-Hsiang Wang; Jiun-Yan Ding; Chia-Ying Yang; Yin-Ru Chiang

Steroid hormones, such as androgens, are common surface-water contaminants. However, literature on the ecophysiological relevance of steroid-degrading organisms in the environment, particularly in anoxic ecosystems, is extremely limited. We previously reported that Steroidobacter denitrificans anaerobically degrades androgens through the 2,3-seco pathway. In this study, the genome of Sdo. denitrificans was completely sequenced. Transcriptomic data revealed gene clusters that were distinctly expressed during anaerobic growth on testosterone. We isolated and characterized the bifunctional 1-testosterone hydratase/dehydrogenase, which is essential for anaerobic degradation of steroid A-ring. Because of apparent substrate preference of this molybdoenzyme, corresponding genes, along with the signature metabolites of the 2,3-seco pathway, were used as biomarkers to investigate androgen biodegradation in the largest sewage treatment plant in Taipei, Taiwan. Androgen metabolite analysis indicated that denitrifying bacteria in anoxic sewage use the 2,3-seco pathway to degrade androgens. Metagenomic analysis and PCR-based functional assays showed androgen degradation in anoxic sewage by Thauera spp. through the action of 1-testosterone hydratase/dehydrogenase. Our integrative ‘omics’ approach can be used for culture-independent investigations of the microbial degradation of structurally complex compounds where isotope-labeled substrates are not easily available.

Collaboration


Dive into the Yin-Ru Chiang's collaboration.

Top Co-Authors

Avatar

Wael Ismail

Arabian Gulf University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tzong-Huei Lee

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge