Yin Shao
Princeton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yin Shao.
optical fiber communication conference | 2011
Dayou Qian; Ming-Fang Huang; Ezra Ip; Yue-Kai Huang; Yin Shao; Junqiang Hu; Ting Wang
Record capacity transmission of 101.7-Tb/s (370×294-Gb/s) is performed over 3×55 km SSMF using PDM-128QAM-OFDM modulation and pilot-based phase noise mitigation. Achieved spectral efficiency of 11 bits/s/Hz is the highest reported to date for WDM transmission.
Journal of Lightwave Technology | 2011
Xiang Zhou; Jianjun Yu; Ming-Fang Huang; Yin Shao; Ting Wang; Lynn E. Nelson; Peter Magill; Martin Birk; Peter Ingo Borel; David W. Peckham; Robert Lingle; Benyuan Zhu
We report the successful transmission of 64 Tb/s capacity (640 ×107 Gb/s with 12.5 GHz channel spacing) over 320 km reach utilizing 8-THz of spectrum in the C+L -bands at a net spectral efficiency of 8 bit/s/Hz. Such a result is accomplished by the use of raised-cosine pulse-shaped PDM-36QAM modulation, intradyne detection, both pre- and post-transmission digital equalization, and ultra-large-area fiber. We discuss in detail the digital modulation technology and signal processing algorithms used in the experiment, including a new two-stage, blind frequency-search-based frequency-offset estimation algorithm and a more computationally efficient carrier-phase recovery algorithm.
Journal of Lightwave Technology | 2012
Dayou Qian; Ming-Fang Huang; Ezra Ip; Yue-Kai Huang; Yin Shao; Junqiang Hu; Ting Wang
We experimentally demonstrate 101.7-Tb/s transmission over 355 km spans of standard single-mode fiber (SSMF) at a net spectral efficiency of 11 b/s/Hz. A total of 370 dense wavelength-division multiplexed (DWDM) channels spanning the optical C- and L-bands spaced at 25 GHz were used. Each 25-GHz channel were subdivided into four subbands, with each subband carrying a 73.5-Gb/s orthogonal frequency-division multiplexed (OFDM) signal modulated with polarization-division-multiplexing (PDM) 128-ary quadrature amplitude modulation (QAM) at each modulated subcarrier. This experiment was enabled by digital signal processing (DSP) pre-equalization of transmitter impairments, all Raman amplification, heterodyne coherent detection, and DSP postequalization of the channel and receiver impairments, including pilot-based phase noise compensation.
Frontiers in Optics | 2012
Dayou Qian; Ezra Ip; Ming-Fang Huang; Ming-Jun Li; Arthur Dogariu; Shaoliang Zhang; Yin Shao; Yue-Kai Huang; Yequn Zhang; Xilin Cheng; Yue Tian; Philip N. Ji; Adam Kent Collier; Ying Geng; Jesús Liñares; Carlos Montero; Vicente Moreno; Xesús Prieto; Ting Wang
We demonstrated 1.05-Pb/s transmission over 3km of multicore fiber with spectral efficiency of 109b/s/Hz, using twelve single-mode cores carrying DP-32QAM-OFDM signals and two few-mode cores carrying DP-QPSK in their LP01 and two LP11 modes.
Journal of Lightwave Technology | 2010
Xiang Zhou; Jianjun Yu; Ming-Fang Huang; Yin Shao; Ting Wang; Peter Magill; Milorad Cvijetic; Lynn E. Nelson; Martin Birk; Guodong Zhang; S. Ten; H. B. Matthew; Snigdharaj Kumar Mishra
In this paper, we propose a novel synthesizing method for high-speed 8-ary quadratic-amplitude modulation (QAM) optical signal generation using commercial optical modulators with binary electrical driving signals. Using this method, we successfully generated 114-Gb/s pulse-duration modulation (PDM)-8QAM optical signals. Intradyne detection of PDM-8QAM optical signals with robust blind polarization demultiplexing has been demonstrated by using a new cascaded multimodulus equalization algorithm. With return-to-zero-shaped PDM-8QAM modulation and the proposed blind polarization demultiplexing algorithm, we demonstrate transmission of a record 32-Tb/s fiber capacity (320 × 114 Gb/s) over 580 km of ultralow-loss single-mode fiber-28 fiber by utilizing C+L-band erbium-doped fiber-amplifier-only optical amplification and single-ended coherent detection technique at an information spectral efficiency of 4.0 bit/s·Hz.
Optics Express | 2011
Neda Cvijetic; Ming Fang Huang; Ezra Ip; Yin Shao; Yue Kai Huang; Milorad Cvijetic; Ting Wang
Record 1.92-Tb/s (40λ × 48 Gb/s/λ) coherent DWDM-OFDMA-PON without high-speed ONU-side ADCs/DACs/DSP/RF clock sources is demonstrated over 100 km straight SSMF with a 1:64 passive split. Novel optical-domain OFDMA sub-band selection, coherent detection, and simple RF components are exploited. As the first experimental verification of a next-generation optical platform capable of delivering 1 Gb/s to 1000(+) users over 100 km, the new architecture is promising for future optical access/metro systems.
optical fiber communication conference | 2010
Xiang Zhou; Jianjun Yu; Ming-Fang Huang; Yin Shao; Ting Wang; Lynn E. Nelson; Peter Magill; Martin Birk; Peter Ingo Borel; David W. Peckham; Robert Lingle
Employing raised-cosine pulse-shaped PDM-36QAM modulation and both pre- and posttransmission digital equalization, we demonstrate 12.5GHz-spaced, 640×107Gbits/s DWDM transmission over 4×80km of ultra-large-area fiber with a record capacity of 64Tb/s at 8b/s/Hz spectral efficiency.
optical fiber communication conference | 2009
Xiang Zhou; Jianjun Yu; Ming-Fang Huang; Yin Shao; Ting Wang; Peter Magill; Milorad Cvijetic; Lynn E. Nelson; Martin Birk; Guodong Zhang; Sergey Y Ten; H. B. Matthew; Snigdharaj Kumar Mishra
Employing PDM-RZ-8QAM modulation, digital coherent detection and EDFA-only amplification, we demonstrate 25 GHz-spaced, 320×114Gb/s DWDM transmission through seven spans of ultra-low-loss fiber (average span length/loss of 82.8 km/14.6 dB) with a record capacity of 32Tb/s.
optical fiber communication conference | 2012
Yue-Kai Huang; Ezra Ip; Philip N. Ji; Yin Shao; Ting Wang; Yoshiaki Aono; Yutaka Yano; Tsutomu Tajima
A superchannel transmitter with fixed 1-Tb/s net data rate and flexible modulation format suitable for dynamic distance/route transmission is proposed. System reach between 800 and 6,000km was achieved with spectral efficiency from 6.15b/s/Hz and 3.33b/s/Hz.
Journal of Lightwave Technology | 2013
Neda Cvijetic; Akihiro Tanaka; Milorad Cvijetic; Yue Kai Huang; Ezra Ip; Yin Shao; Ting Wang
In this paper, primary technical challenges for emerging optical mobile backhaul (MBH) networks are discussed, with a focus on novel optical access and digital signal processing (DSP) architectures for future MBH. The first downstream/upstream Orthogonal Frequency Division Multiple Access and Time Division Multiple Access Passive Optical Network (OFDMA/TDMA-PON) achieving >;100 Mb/s per-cell mobile backhaul and burst-mode operation using off-the-shelf avalanche photodiodes (APDs) is proposed and experimentally demonstrated for last-mile optical MBH with 200 cells per fiber. In the new approach, the use of OFDMA is motivated by the capability to establish low latency, virtual point-to-point links in the frequency-domain to serve high-density cell areas, while a judicious hybrid of DSP-enhanced digital radio-over-fiber (dRoF) and TDMA is proposed as an efficient way to meet <; 1 ms latency constraints subject to a 3 dB upstream burst-mode dynamic range tolerance. By thus enabling high speed, low latency, and low cost via simplified optics, the novel OFDMA/TDMA-PON is promising for future 4G and beyond optical backhaul networks.