Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yin Sheng Chen is active.

Publication


Featured researches published by Yin Sheng Chen.


BMC Cancer | 2014

MiR-181b sensitizes glioma cells to teniposide by targeting MDM2

Yan chang Sun; Jing Wang; Cheng cheng Guo; Ke Sai; Jian Wang; Fu rong Chen; Qun Ying Yang; Yin Sheng Chen; Jie Wang; Tony Shing Shun To; Zong ping Zhang; Yong Gao Mu; Zhong Ping Chen

BackgroundAlthough the incidence of glioma is relatively low, it is the most malignant tumor of the central nervous system. The prognosis of high-grade glioma patient is very poor due to the difficulties in complete resection and resistance to radio-/chemotherapy. Therefore, it is worth investigating the molecular mechanisms involved in glioma drug resistance. MicroRNAs have been found to play important roles in tumor progression and drug resistance. Our previous work showed that miR-181b is involved in the regulation of temozolomide resistance. In the current study, we investigated whether miR-181b also plays a role in antagonizing the effect of teniposide.MethodsMiR-181b expression was measured in 90 glioma patient tissues and its relationship to prognosis of these patients was analyzed. Cell sensitivity to teniposide was tested in 48 primary cultured glioma samples. Then miR-181b stably overexpressed U87 cells were generated. The candidate genes of miR-181b from our previous study were reanalyzed, and the interaction between miR-181b and target gene MDM2 was confirmed by dual luciferase assay. Cell sensitivity to teniposide was detected on miR-181b over expressed and MDM2 down regulated cells.ResultsOur data confirmed the low expression levels of miR-181b in high-grade glioma tissues, which is related to teniposide resistance in primary cultured glioma cells. Overexpression of miR-181b increased glioma cell sensitivity to teniposide. Through target gene prediction, we found that MDM2 is a candidate target of miR-181b. MDM2 knockdown mimicked the sensitization effect of miR-181b. Further study revealed that miR-181b binds to the 3’-UTR region of MDM2 leading to the decrease in MDM2 levels and subsequent increase in teniposide sensitivity. Partial restoration of MDM2 attenuated the sensitivity enhancement by miR-181b.ConclusionsMiR-181b is an important positive regulator on glioma cell sensitivity to teniposide. It confers glioma cell sensitivity to teniposide through binding to the 3’-UTR region of MDM2 leading to its reduced expression. Our findings not only reveal the novel mechanism involved in teniposide resistance, but also shed light on the optimization of glioma treatment in the future.


Chinese Journal of Cancer | 2014

Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

Zhi Kun Qiu; Dong Shen; Yin Sheng Chen; Qun Ying Yang; Cheng Cheng Guo; Bing Hong Feng; Zhong Ping Chen

O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line (SF-767) and 7 MGMT-negative cell lines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P < 0.05). However, there was no significant difference in the 50% inhibition concentration (IC50) of TMZ between MGMT-positive and MGMT-negative GSCs (P > 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.


Chinese Journal of Cancer | 2014

Vasculogenic mimicry: a novel target for glioma therapy.

Yin Sheng Chen; Zhong Ping Chen

Anti-angiogenic therapy has shown promising but insufficient efficacy on gliomas. Recent studies suggest that vasculogenic mimicry (VM), or the formation of non-endothelial, tumor-cell-lined microvascular channels, occurs in aggressive tumors, including gliomas. There is also evidence of a physiological connection between the endothelial-lined vasculature and VM channels. Tumor cells, by virtue of their high plasticity, can form vessel-like structures themselves, which may function as blood supply networks. Our previous study on gliomas showed that microvessel density was comparably less in VM-positive tumors than in VM-negative tumors. Thus, VM may act as a complement to ensure tumor blood supply, especially in regions with less microvessel density. Patients with VM-positive gliomas survived a shorter period of time than did patients with VM-negative gliomas. Although the detailed molecular mechanisms for VM are not fully understood, glioma stem cells might play a key role, since they are involved in tumor tissue remodeling and contribute to neovascularization via transdifferentiation. In the future, successful treatment of gliomas should involve targeting both VM and angiogenesis. In this review, we summarize the progress and challenges of VM in gliomas.


The American Journal of Chinese Medicine | 2014

Triptolide Synergistically Enhances Temozolomide-Induced Apoptosis and Potentiates Inhibition of NF-κB Signaling in Glioma Initiating Cells

Ke Sai; Wen Yu Li; Yin Sheng Chen; Jian Wang; Su Guan; Qun Ying Yang; Cheng Cheng Guo; Yong Gao Mou; Wei Ping Li; Zhong Ping Chen

Glioblastoma multiforme (GBM) is a lethal solid cancer in adults. Temozolomide (TMZ) is a first-line chemotherapeutic agent but the efficacy is limited by intrinsic and acquired resistance in GBM. Triptolide (TPL), a derivative from traditional Chinese medicine, demonstrated anti-tumor activity. In this study, we explored the interaction of TPL and TMZ in glioma-initiating cells (GICs) and the potential mechanism. A GIC line (GIC-1) was successfully established. Cell viability of GIC-1 after treatment was measured using a CCK-8 assay. The interaction between TPL and TMZ was calculated from Chou-Talalay equations and isobologram. Self-renewal was evaluated with tumor sphere formation assay. Apoptosis was assessed with flow cytometry and western blot. Luciferase assay was employed to measure NF-κB transcriptional activity. The expression of NF-κB downstream genes, NF-κB nuclear translocalization and phoshorylation of IκBα and p65 were evaluated using western blot. We found that GIC-1 cells were resistant to TMZ, with the expected IC50 of 705.7 μmol/L. Co-treatment with TPL yielded a more than three-fold dose reduction of TMZ. TPL significantly increased the percentage of apoptotic cells and suppressed the tumor sphere formation when combined with TMZ. Phosphorylation of IκBα and p65 coupled with NF-κB nuclear translocalization were notably inhibited after a combined treatment. Co-incubation synergistically repressed NF-κB transcriptional activity and downstream gene expression. TPL sensitizes GICs to TMZ by synergistically enhancing apoptosis, which is likely resulting from the augmented repression of NF-κB signaling. TPL is therefore a potential chemosensitizer in the treatment of GBM.


Oncology Reports | 2015

Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells

Dong Shen; Cheng Cheng Guo; Jing Wang; Zhi Kun Qiu; Ke Sai; Qun Ying Yang; Yin Sheng Chen; Fu Rong Chen; Jie Wang; Lawrence C. Panasci; Zhong Ping Chen

Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas.


Journal of the Neurological Sciences | 2014

Safety evaluation of high-dose BCNU-loaded biodegradable implants in Chinese patients with recurrent malignant gliomas

Ke Sai; Ming Gu Zhong; Jian Wang; Yin Sheng Chen; Yong Gao Mou; Chao Ke; Xiang Heng Zhang; Qun Ying Yang; Fu hua Lin; Cheng Cheng Guo; Zheng He Chen; Jing Zeng; Yan Chun Lv; Xiang Li; Wen Chang Gao; Zhong Ping Chen

OBJECTIVES Malignant gliomas are common primary brain tumors with dismal prognosis. The blood-brain barrier and unacceptable systemic toxicity limit the employment of chemotherapeutic agents. BCNU-impregnated biodegradable polymers (Gliadel®) have been demonstrated to prolong the survival of patients with malignant gliomas. Until now, no biodegradable drug delivery system has been commercially available in China. In the present study, we evaluated the safety of implants with high-dose BCNU in Chinese patients with recurrent malignant gliomas. PATIENTS AND METHODS Adults with supratentorial recurrent malignant glioma were eligible. High-dose BCNU-loaded PLGA implants (20mg of BCNU in each implant) were placed in the debulking cavity. The implants were investigated by a classical 3+3 design. Four levels of BCNU, up to 12 implants, were evaluated. Pharmacokinetic sampling was performed. The toxicity of the implants and the survival of patients were recorded. RESULTS Fifteen recurrent patients were enrolled with 12 glioblastomas and 3 anaplastic gliomas. Among 15 patients, 3 were treated with 3 implants (60 mg of BCNU), 3 with 6 implants (120 mg), 3 with 9 implants (180 mg) and 6 with 12 implants (240 mg). No dose-limiting toxicity was observed in the cohort of patients. Subgaleal effusion was the most common adverse event, presenting in 7 patients (46.7%). The median overall survival (OS) was 322 days (95% CI, 173-471 days). The 6-month, 1-year and 2-year survival rates were 66.7%, 40% and 13.3%, respectively. CONCLUSIONS The high-dose BCNU-loaded PLGA implants were safe for Chinese patients with recurrent malignant gliomas and further investigation for efficacy is warranted.


Neuro-oncology | 2017

Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging

Xin Mei; Yin Sheng Chen; Fu Rong Chen; Shao Yan Xi; Zhong Ping Chen

Background Glioblastoma cell-initiated vascularization is an alternative angiogenesis called vasculogenic mimicry. However, current knowledge on the mechanism of de novo vessel formation from glioblastoma stem cells (GSCs) is limited. Methods Sixty-four glioblastoma samples from patients and 10 fluorescent glioma xenograft samples were examined by immunofluorescence staining for endothelial marker (CD34 and CD31) and glial cell marker (glial fibrillary acidic protein [GFAP]) expression. GSCs were then isolated from human glioblastoma tissue and CD133+/Sox2+ red fluorescent protein-containing (RFP)-GSC-1 cells were established. The ability of these cells to form vascular structures was examined by live-cell imaging of 3D cultures. Results CD34-GFAP or CD31-GFAP coexpressing glioblastoma-derived endothelial cells (GDEC) were found in 30 of 64 (46.9%) of clinical glioblastoma samples. In those 30 samples, GDEC were found to form vessel structures in 21 (70%) samples. Among 21 samples with GDEC vessels, the CD34+ GDEC vessels and CD31+ GDEC vessels accounted for about 14.16% and 18.08% of total vessels, respectively. In the xenograft samples, CD34+ GDEC were found in 7 out of 10 mice, and 4 out of 7 mice had CD34+ GDEC vessels. CD31+ GDEC were also found in 7 mice, and 4 mice had CD31+ GDEC vessels (10 mice in total). Through live-cell imaging, we observed gradual CD34 expression when cultured with vascular endothelial growth factor in some glioma cells, and a dynamic increase in endothelial marker expression in RFP-GSC-1 in vitro was recorded. Cells expressed CD34 (9.46%) after 6 hours in culture. Conclusions The results demonstrated that GSCs may differentiate into endothelial cells and promote angiogenesis in glioblastomas.


World Journal of Surgical Oncology | 2013

Neurosurgical interventions for patients with nasopharyngeal carcinoma: a single institution experience.

Ke Sai; Yong Gao Mou; Jing Zeng; Yan Chun Lv; Shao Yan Xi; Su Guan; Xiang Heng Zhang; Jian Wang; Chao Ke; Jian gui Guo; Yin Sheng Chen; Zhong Ping Chen

BackgroundNasopharyngeal carcinoma (NPC) is a frequent head and neck cancer in southern China and Southeast Asia. The majority of NPC patients are managed by radiation oncologists, medical oncologists and head and neck surgeons. Actually, neurosurgical interventions are warranted under specific circumstances. In this article, we described our experience as neurosurgeons in the management of NPC patients.MethodsMedical records of NPC patients who received neurosurgical procedure at Sun Yat-sen University Cancer Center were reviewed.ResultsTwenty-seven patients were identified. Among 27 cases, neurosurgical procedures were performed in 18 (66.7%) with radiation-induced temporal necrosis, 2 (7.4%) with radiation-induced sarcoma, 4 (14.8%) with synchronous NPC with primary brain tumors, 2 (7.4%) with recurrent NPC involving skull base, and 1 (3.7%) with metachronous skull eosinophilic granuloma, respectively. The diagnosis is challenging in specific cases and initial misdiagnoses were found in 6 (22.2%) patients.ConclusionsFor NPC patients with intracranial or skull lesions, the initial diagnosis can be occasionally difficult because of the presence or a history of NPC and related treatment. Unawareness of these entities can result in misdiagnosis and subsequent improper treatment. Neurosurgical interventions are necessary for the diagnosis and treatment for these patients.


Oncotarget | 2017

Evaluation of cumulative prognostic score based on pretreatment plasma fibrinogen and serum albumin levels in patients with newly diagnosed high-grade gliomas

Zhen Qiang He; Hao Duan; Chao Ke; Xiang Heng Zhang; Cheng Cheng Guo; Fuad Al-Nahari; Ji Zhang; Zheng He Chen; Yin Sheng Chen; Zhi-gang Liu; Jian Wang; Zhong Ping Chen; Xiao Bing Jiang; Yong Gao Mou

This retrospective study was designed to determine the prognostic value of a cumulative score (FA score) based on pretreatment plasma fibrinogen and serum albumin levels for 326 patients newly diagnosed high-grade glioma (HGG). Receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cut-off values. Univariate and multivariate analysis were performed to evaluate the independent prognostic value of the FA scores associated with overall survival (OS) and progression-free survival (PFS). The optimal cut-off values were 2.815 g/L for fibrinogen and 43.65 g/L for albumin. PFS and OS were significantly worse for patients with higher FA scores. Patients with elevated fibrinogen level and decreased albumin levels had 3.00-fold higher risk of tumor progression and had a 3.23-fold higher risk of death compared with those with normal values. Multivariate analysis demonstrated FA score was an independent predictive factor for PFS and OS. Moreover, PFS and OS were better for the patients with lower FA score, either in patients with grade III or IV gliomas. These findings indicated that the pretreatment FA score could serve as a simple and noninvasive marker to predict the prognosis of patients with HGG.


Annals of palliative medicine | 2017

Langerhans cell histiocytosis of skull: a retrospective study of 18 cases.

Xiang Heng Zhang; Ji Zhang; Zheng He Chen; Ke Sai; Yin Sheng Chen; Jian Wang; Chao Ke; Chen Chen Guo; Zhong Ping Chen; Yong Gao Mou

BACKGROUND The present study presents 18 cases of Chinese patients harboring a Langerhans cell histiocytosis (LCH) of the skull. METHODS Eighteen consecutive patients were diagnosed as LCH of the skull and confirmed pathologically between March 2002 and February 2014. In the present study, the patients of LCH without skull involvement were excluded. According to disease extent at diagnosis, the 18 LCH patients with skull involvement were divided into three groups: (I) unifocal-monosystem group, including ten cases with solitary skull lesion; (II) multifocal-monosystem group, including two cases with multiple bone lesions and no extra-skeletal involvement; (III) multisystem group, including six cases with LCH lesions involving both skeletal and extra-skeletal system. In unifocal-monosystem group, excision of the skull lesion was performed in eight of ten cases, a low dosage of local radiotherapy and a purposeful observation was accept by the remaining two cases of this group after biopsy respectively. In multifocal-monosystem group, both of the two cases were received chemotherapy. In multi-system group, all the six cases were managed with systemic chemotherapy, after their diagnoses of LCH were confirmed. RESULTS The mean age at the time of diagnosis was 9.4 years. There was a male predominance in this disease male/female ratio was 3.5:1. In our cases, a skull mass with or without tenderness was the most common chief complaint (13 cases, 72.2%), and frontal bone was the most frequent affected locations of skull (6 cases, 33.3%). In unifocal-monosystem group, nine of ten remained free from LCH, the remain one lesion recurred 22 months after his surgical excision. In multifocal-monosystem group, a complete response (CR) was obtained in one of them, and a stable disease (SD) of multiple osseous lesions was obtained in another one. In the multi-system group, a CR in four cases and a partial response (PR) in one case were obtained, and a progressive disease (PD) was observed in the remaining one. CONCLUSIONS The unifocal-monosystem of LCH of the skull is a clinicopathological entity with a good outcome, and resection, irradiation or purposeful observation are also can be been utilized as the choice of treatment. For the multifocal bone lesions and multisystem lesions of LCH, chemotherapy is an effective treatment as a systemic therapy. There is no enough publication literature to determine guidelines or indications for managing this disease.

Collaboration


Dive into the Yin Sheng Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Wang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Sai

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Ke

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Zhang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge