Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yin Xiang Setoh is active.

Publication


Featured researches published by Yin Xiang Setoh.


PLOS ONE | 2013

A new insect - specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells

Jody Hobson-Peters; Alice Wei Yee Yam; Jennifer Wei Fei Lu; Yin Xiang Setoh; Fiona J. May; Nina Kurucz; Susan Walsh; Natalie A. Prow; Steven Davis; Richard Weir; Lorna Melville; Neville Hunt; Richard I. Webb; Bradley J. Blitvich; Peter I Whelan; Roy A. Hall

Recent reports of a novel group of flaviviruses that replicate only in mosquitoes and appear to spread through insect populations via vertical transmission have emerged from around the globe. To date, there is no information on the presence or prevalence of these insect-specific flaviviruses (ISFs) in Australian mosquito species. To assess whether such viruses occur locally, we used reverse transcription-polymerase chain reaction (RT-PCR) and flavivirus universal primers that are specific to the NS5 gene to detect these viruses in mosquito pools collected from the Northern Territory. Of 94 pools of mosquitoes, 13 were RT-PCR positive, and of these, 6 flavivirus isolates were obtained by inoculation of mosquito cell culture. Sequence analysis of the NS5 gene revealed that these isolates are genetically and phylogenetically similar to ISFs reported from other parts of the world. The entire coding region of one isolate (designated 56) was sequenced and shown to have approximately 63.7% nucleotide identity and 66.6% amino acid identity with its closest known relative (Nakiwogo virus) indicating that the prototype Australian ISF represents a new species. All isolates were obtained from Coquillettidia xanthogaster mosquitoes. The new virus is tentatively named Palm Creek virus (PCV) after its place of isolation. We also demonstrated that prior infection of cultured mosquito cells with PCV suppressed subsequent replication of the medically significant West Nile and Murray Valley encephalitis viruses by 10–43 fold (1 to 1.63 log) at 48 hr post-infection, suggesting that superinfection exclusion can occur between ISFs and vertebrate-infecting flaviviruses despite their high level of genetic diversity. We also generated several monoclonal antibodies (mAbs) that are specific to the NS1 protein of PCV, and these represent the first ISF-specific mAbs reported to date.


Journal of Virology | 2014

The West Nile Virus-Like Flavivirus Koutango Is Highly Virulent in Mice due to Delayed Viral Clearance and the Induction of a Poor Neutralizing Antibody Response

Natalie A. Prow; Yin Xiang Setoh; Rebecca M. Biron; David P. Sester; Kwang S ik Kim; Jody Hobson-Peters; Roy A. Hall; Helle Bielefeldt-Ohmann

ABSTRACT The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II. IMPORTANCE In this study, we characterized the in vitro and in vivo properties of previously uncharacterized West Nile virus strains and West Nile-like viruses. We identified a West Nile-like virus, Koutango virus (WNVKOU), that was more virulent than a known virulent lineage I virus, WNVNY99. The enhanced virulence of WNVKOU was associated with poor viral clearance and the induction of a poor neutralizing antibody response. These findings provide new insights into the pathogenesis of West Nile virus.


Journal of General Virology | 2015

Post-translational regulation and modifications of flavivirus structural proteins.

Justin A. Roby; Yin Xiang Setoh; Roy A. Hall; Alexander A. Khromykh

Flaviviruses are a group of single-stranded, positive-sense RNA viruses that generally circulate between arthropod vectors and susceptible vertebrate hosts, producing significant human and veterinary disease burdens. Intensive research efforts have broadened our scientific understanding of the replication cycles of these viruses and have revealed several elegant and tightly co-ordinated post-translational modifications that regulate the activity of viral proteins. The three structural proteins in particular - capsid (C), pre-membrane (prM) and envelope (E) - are subjected to strict regulatory modifications as they progress from translation through virus particle assembly and egress. The timing of proteolytic cleavage events at the C-prM junction directly influences the degree of genomic RNA packaging into nascent virions. Proteolytic maturation of prM by host furin during Golgi transit facilitates rearrangement of the E proteins at the virion surface, exposing the fusion loop and thus increasing particle infectivity. Specific interactions between the prM and E proteins are also important for particle assembly, as prM acts as a chaperone, facilitating correct conformational folding of E. It is only once prM/E heterodimers form that these proteins can be secreted efficiently. The addition of branched glycans to the prM and E proteins during virion transit also plays a key role in modulating the rate of secretion, pH sensitivity and infectivity of flavivirus particles. The insights gained from research into post-translational regulation of structural proteins are beginning to be applied in the rational design of improved flavivirus vaccine candidates and make attractive targets for the development of novel therapeutics.


The Journal of Infectious Diseases | 2015

A Kunjin Replicon Virus-like Particle Vaccine Provides Protection Against Ebola Virus Infection in Nonhuman Primates

Oleg V. Pyankov; Sergey A. Bodnev; Olga G. Pyankova; Vladislav V. Solodkyi; Stepan A. Pyankov; Yin Xiang Setoh; Valentina A. Volchkova; Andreas Suhrbier; Viktor V. Volchkov; Alexander A. Agafonov; Alexander A. Khromykh

The current unprecedented outbreak of Ebola virus (EBOV) disease in West Africa has demonstrated the urgent need for a vaccine. Here, we describe the evaluation of an EBOV vaccine candidate based on Kunjin replicon virus-like particles (KUN VLPs) encoding EBOV glycoprotein with a D637L mutation (GP/D637L) in nonhuman primates. Four African green monkeys (Cercopithecus aethiops) were injected subcutaneously with a dose of 10(9) KUN VLPs per animal twice with an interval of 4 weeks, and animals were challenged 3 weeks later intramuscularly with 600 plaque-forming units of Zaire EBOV. Three animals were completely protected against EBOV challenge, while one vaccinated animal and the control animal died from infection. We suggest that KUN VLPs encoding GP/D637L represent a viable EBOV vaccine candidate.


Journal of General Virology | 2015

Systematic analysis of viral genes responsible for differential virulence between American and Australian West Nile virus strains

Yin Xiang Setoh; Natalie A. Prow; Daniel J. Rawle; Cindy S. E. Tan; Judith H. Edmonds; Roy A. Hall; Alexander A. Khromykh

A variant Australian West Nile virus (WNV) strain, WNVNSW2011, emerged in 2011 causing an unprecedented outbreak of encephalitis in horses in south-eastern Australia. However, no human cases associated with this strain have yet been reported. Studies using mouse models for WNV pathogenesis showed that WNVNSW2011 was less virulent than the human-pathogenic American strain of WNV, New York 99 (WNVNY99). To identify viral genes and mutations responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, we constructed chimeric viruses with substitution of large genomic regions coding for the structural genes, non-structural genes and untranslated regions, as well as seven individual non-structural gene chimeras, using a modified circular polymerase extension cloning method. Our results showed that the complete non-structural region of WNVNSW2011, when substituted with that of WNVNY99, significantly enhanced viral replication and the ability to suppress type I IFN response in cells, resulting in higher virulence in mice. Analysis of the individual non-structural gene chimeras showed a predominant contribution of WNVNY99 NS3 to increased virus replication and evasion of IFN response in cells, and to virulence in mice. Other WNVNY99 non-structural proteins (NS2A, NS4B and NS5) were shown to contribute to the modulation of IFN response. Thus a combination of non-structural proteins, likely NS2A, NS3, NS4B and NS5, is primarily responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, and accumulative mutations within these proteins would likely be required for the Australian WNVNSW2011 strain to become significantly more virulent.


mSphere | 2017

De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case

Yin Xiang Setoh; Natalie A. Prow; Nias Y. Peng; Leon E. Hugo; Gregor J. Devine; Jessamine E. Hazlewood; Andreas Suhrbier; Alexander A. Khromykh

The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses. ABSTRACT Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero. Herein, we describe the de novo generation of a new ZIKV isolate, ZIKVNatal, using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKVNatal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKVNatal could be used to establish a fetal brain infection model in IFNAR−/− mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKVNatal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKVNatal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses.


Journal of General Virology | 2012

Identification of residues in West Nile virus pre-membrane protein that influence viral particle secretion and virulence.

Yin Xiang Setoh; Natalie A. Prow; Jody Hobson-Peters; Mario Lobigs; Paul R. Young; Alexander A. Khromykh; Roy A. Hall

The pre-membrane protein (prM) of West Nile virus (WNV) functions as a chaperone for correct folding of the envelope (E) protein, and prevents premature fusion during virus egress. However, little is known about its role in virulence. To investigate this, we compared the amino acid sequences of prM between a highly virulent North American strain (WNV(NY99)) and a weakly virulent Australian subtype (WNV(KUN)). Five amino acid differences occur in WNV(NY99) compared with WNV(KUN) (I22V, H43Y, L72S, S105A and A156V). When expressed in mammalian cells, recombinant WNV(NY99) prM retained native antigenic structure, and was partially exported to the cell surface. In contrast, WNV(KUN) prM (in the absence of the E protein) failed to express a conserved conformational epitope and was mostly retained at the pre-Golgi stage. Substitutions in residues 22 (Ile to Val) and 72 (Leu to Ser) restored the antigenic structure and cell surface expression of WNV(KUN) prM to the same level as that of WNV(NY99), and enhanced the secretion of WNV(KUN) prME particles when expressed in the presence of E. Introduction of the prM substitutions into a WNV(KUN) infectious clone (FLSDX) enhanced the secretion of infectious particles in Vero cells, and enhanced virulence in mice. These findings highlight the role of prM in viral particle secretion and virulence, and suggest the involvement of the L72S and I22V substitutions in modulating these activities.


Journal of Virological Methods | 2011

Expression of recombinant West Nile virus prM protein fused to an affinity tag for use as a diagnostic antigen.

Yin Xiang Setoh; Jody Hobson-Peters; Natalie A. Prow; Paul R. Young; Roy A. Hall

Previous studies have concluded that the Flavivirus prM protein is a suitable viral antigen to distinguish serologically between infections with closely related Flaviviruses (Cardosa et al., 2002). To express the recombinant West Nile virus (WNV) prM antigen fused to a suitable affinity tag for purification, a series of prM-His-tag and prM-V5-tag fusion proteins were generated. Analysis of the prM-His-tag fusion proteins revealed that either prM epitopes were disrupted or the His-tag was not presented properly depending on the location of the His tag and the presence of the prM transmembrane domains in these constructs. This identified domains critical for proper folding of prM, and arrangements that allowed the correct presentation of the His-tag. However, the inclusion of the V5 epitope tag fused to the C terminus of prM allowed formation of the authentic antigenic structure of prM and the proper presentation of the V5 epitope. Capture of tagged recombinant WNV(NY99) prM antigen to the solid phase with anti-V5 antibody in ELISA enabled the detection of prM-specific antibodies in WNV(NY99)-immune horse serum, confirming its potential as a useful diagnostic reagent.


Nature Communications | 2018

A vaccinia-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses

Natalie A. Prow; Liang Liu; Eri Nakayama; Tamara H. Cooper; Kexin Yan; Preethi Eldi; Jessamine E. Hazlewood; Bing Tang; Thuy Le; Yin Xiang Setoh; Alexander A. Khromykh; Jody Hobson-Peters; Kerrilyn R. Diener; Paul M. Howley; John D. Hayball; Andreas Suhrbier

Zika and chikungunya viruses have caused major epidemics and are transmitted by Aedes aegypti and/or Aedes albopictus mosquitoes. The “Sementis Copenhagen Vector” (SCV) system is a recently developed vaccinia-based, multiplication-defective, vaccine vector technology that allows manufacture in modified CHO cells. Herein we describe a single-vector construct SCV vaccine that encodes the structural polyprotein cassettes of both Zika and chikungunya viruses from different loci. A single vaccination of mice induces neutralizing antibodies to both viruses in wild-type and IFNAR−/− mice and protects against (i) chikungunya virus viremia and arthritis in wild-type mice, (ii) Zika virus viremia and fetal/placental infection in female IFNAR−/− mice, and (iii) Zika virus viremia and testes infection and pathology in male IFNAR−/− mice. To our knowledge this represents the first single-vector construct, multi-pathogen vaccine encoding large polyproteins, and offers both simplified manufacturing and formulation, and reduced “shot burden” for these often co-circulating arboviruses.Zika and chikungunya virus are co-circulating in many regions and currently there is no approved vaccine for either virus. Here, the authors engineer one vaccinia virus based vaccine for both, Zika and chikungunya, and show protection from infection and pathogenesis in mice.


Scientific Reports | 2017

Chimeric viruses between Rocio and West Nile: the role for Rocio prM-E proteins in virulence and inhibition of interferon-α/β signaling

Alberto Anastacio Amarilla; Yin Xiang Setoh; Parthiban Periasamy; Nias Y. Peng; Gabor Pali; Luiz Tadeu Moraes Figueiredo; Alexander A. Khromykh; Victor Hugo Aquino

Mosquito-transmitted flavivirus Rocio (ROCV) was responsible for an outbreak of encephalitis in the Ribeira Valley, located in the south coast of Sao Paulo State, Brazil, in 1975–1976. ROCV also causes fatal encephalitis in adult mice. Seroprevalence studies in humans, horses and water buffaloes in different regions of Brazil have suggested that ROCV is still circulating in the country, indicating the risk of re-emergence of this virus. West Nile virus (WNV) is also a mosquito-transmitted encephalitic flavivirus, however, WNV strains circulating in Australia have not been associated with outbreaks of disease in humans and exhibit low virulence in adult mice. To identify viral determinants of ROCV virulence, we have generated reciprocal chimeric viruses between ROCV and the Australian strain of WNV by swapping structural prM and E genes. Chimeric WNV containing ROCV prM-E genes replicated more efficiently than WNV or chimeric ROCV containing WNV prM-E genes in mammalian cells, was as virulent as ROCV in adult mice, and inhibited type I IFN signaling as efficiently as ROCV. The results show that ROCV prM and E proteins are major virulence determinants and identify unexpected function of these proteins in inhibition of type I interferon response.

Collaboration


Dive into the Yin Xiang Setoh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalie A. Prow

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Roy A. Hall

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Suhrbier

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nias Y. Peng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Paul R. Young

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge