Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yinbo Gan is active.

Publication


Featured researches published by Yinbo Gan.


Development | 2007

Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate

Yinbo Gan; Chang Liu; Hao Yu; Pierre Broun

The effective integration of hormone signals is essential to normal plant growth and development. Gibberellins (GA) and cytokinins act antagonistically in leaf formation and meristem maintenance and GA counteract some of the effects of cytokinins on epidermal differentiation. However, both can stimulate the initiation of defensive epidermal structures called trichomes. To understand how their relative influence on epidermal cell fate is modulated, we investigated the molecular mechanisms through which they regulate trichome initiation in Arabidopsis. The control by cytokinins of trichome production requires two genes expressed in late inflorescence organs, ZFP8 and GIS2, which encode C2H2 transcription factors related to GLABROUS INFLORESCENCE STEMS (GIS). Cytokinin-inducible GIS2 plays a prominent role in the cytokinin response, in which it acts downstream of SPINDLY and upstream of GLABROUS1. In addition, GIS2 and ZFP8 mediate, like GIS, the regulation of trichome initiation by gibberellins. By contrast, GIS does not play a significant role in the cytokinin response. Collectively, GIS, ZFP8 and GIS2, which encode proteins that are largely equivalent in function, play partially redundant and essential roles in inflorescence trichome initiation and in its regulation by GA and cytokinins. These roles are consistent with their pattern of expression and with the regional influence of GA and cytokinins on epidermal differentiation. Our findings show that functional specialization within a transcription factor gene family can facilitate the integration of different developmental cues in the regulation of plant cell differentiation.


The Plant Cell | 2006

GLABROUS INFLORESCENCE STEMS Modulates the Regulation by Gibberellins of Epidermal Differentiation and Shoot Maturation in Arabidopsis

Yinbo Gan; Rod Kumimoto; Chang Liu; Oliver Ratcliffe; Hao Yu; Pierre Broun

As a plant shoot matures, it transitions through a series of growth phases in which successive aerial organs undergo distinct developmental changes. This process of phase change is known to be influenced by gibberellins (GAs). We report the identification of a putative transcription factor, GLABROUS INFLORESCENCE STEMS (GIS), which regulates aspects of shoot maturation in Arabidopsis thaliana. GIS loss-of-function mutations affect the epidermal differentiation of inflorescence organs, causing a premature decrease in trichome production on successive leaves, stem internodes, and branches. Overexpression has the opposite effect on trichome initiation and causes other heterochronic phenotypes, affecting flowering and juvenile–adult leaf transition and inducing the formation of rosette leaves on inflorescence stems. Genetic and gene expression analyses suggest that GIS acts in a GA-responsive pathway upstream of the trichome initiation regulator GLABROUS1 (GL1) and downstream of the GA signaling repressor SPINDLY (SPY). GIS mediates the induction of GL1 expression by GA in inflorescence organs and is antagonized in its action by the DELLA repressor GAI. The implication of GIS in the broader regulation of phase change is further suggested by the delay in flowering caused by GIS loss of function in the spy background. The discovery of GIS reveals a novel mechanism in the control of shoot maturation, through which GAs regulate cellular differentiation in plants.


The Plant Cell | 2011

A DELLA in Disguise: SPATULA Restrains the Growth of the Developing Arabidopsis Seedling

Eve-Marie Josse; Yinbo Gan; Jordi Bou-Torrent; Kelly Stewart; Alison D. Gilday; C. E. Jeffree; Fabián E. Vaistij; Jaime F. Martínez-García; Ferenc Nagy; Ian A. Graham; Karen J. Halliday

This study examines the role of the PHYTOCHROME INTERACTING FACTOR3 homolog SPATULA (SPT) in the control of the developing seedling and shows that SPT is a potent regulator of cotyledon size, acting in parallel to DELLAs. As DELLAs negatively regulate SPT abundance, the light regulation of DELLAs drives the DELLA-SPT counterbalance, enforcing growth restraint across a range of ambient light conditions that are prevalent in nature. The period following seedling emergence is a particularly vulnerable stage in the plant life cycle. In Arabidopsis thaliana, the phytochrome-interacting factor (PIF) subgroup of basic-helix-loop-helix transcription factors has a pivotal role in regulating growth during this early phase, integrating environmental and hormonal signals. We previously showed that SPATULA (SPT), a PIF homolog, regulates seed dormancy. In this article, we establish that unlike PIFs, which mainly promote hypocotyl elongation, SPT is a potent regulator of cotyledon expansion. Here, SPT acts in an analogous manner to the gibberellin-dependent DELLAs, REPRESSOR OF GA1-3 and GIBBERELLIC ACID INSENSITIVE, which restrain cotyledon expansion alongside SPT. However, although DELLAs are not required for SPT action, we demonstrate that SPT is subject to negative regulation by DELLAs. Cross-regulation of SPT by DELLAs ensures that SPT protein levels are limited when DELLAs are abundant but rise following DELLA depletion. This regulation provides a means to prevent excessive growth suppression that would result from the dual activity of SPT and DELLAs, yet maintain growth restraint under DELLA-depleted conditions. We present evidence that SPT and DELLAs regulate common gene targets and illustrate that the balance of SPT and DELLA action depends on light quality signals in the natural environment.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA.

Fabián E. Vaistij; Yinbo Gan; Steven Penfield; Alison D. Gilday; Anuja Dave; Zhesi He; Eve-Marie Josse; Giltsu Choi; Karen J. Halliday; Ian A. Graham

Freshly matured seeds exhibit primary dormancy, which prevents germination until environmental conditions are favorable. The establishment of dormancy occurs during seed development and involves both genetic and environmental factors that impact on the ratio of two antagonistic phytohormones: abscisic acid (ABA), which promotes dormancy, and gibberellic acid, which promotes germination. Although our understanding of dormancy breakage in mature seeds is well advanced, relatively little is known about the mechanisms involved in establishing dormancy during seed maturation. We previously showed that the SPATULA (SPT) transcription factor plays a key role in regulating seed germination. Here we investigate its role during seed development and find that, surprisingly, it has opposite roles in setting dormancy in Landsberg erecta and Columbia Arabidopsis ecotypes. We also find that SPT regulates expression of five transcription factor encoding genes: ABA-INSENSITIVE4 (ABI4) and ABI5, which mediate ABA signaling; REPRESSOR-OF-GA (RGA) and RGA-LIKE3 involved in gibberellic acid signaling; and MOTHER-OF-FT-AND-TFL1 (MFT) that we show here promotes Arabidopsis seed dormancy. Although ABI4, RGA, and MFT are repressed by SPT, ABI5 and RGL3 are induced. Furthermore, we show that RGA, MFT, and ABI5 are direct targets of SPT in vivo. We present a model in which SPT drives two antagonistic “dormancy-repressing” and “dormancy-promoting” routes that operate simultaneously in freshly matured seeds. Each of these routes has different impacts and this in turn explains the opposite effect of SPT on seed dormancy of the two ecotypes analyzed here.


New Phytologist | 2013

Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana

Zhongjing Zhou; Lili Sun; Yongqin Zhao; Lijun An; An Yan; Xiaofang Meng; Yinbo Gan

The Arabidopsis trichome is a model system for studying cell development, cell differentiation and the cell cycle in plants. Our previous studies have shown that the ZINC FINGER PROTEIN5 (ZFP5) controls shoot maturation and epidermal cell fate through GA signaling in Arabidopsis. We have identified a novel C2H2 zinc finger protein ZINC FINGER PROTEIN 6 (ZFP6) which plays a key role in regulating trichome development in Arabidopsis. Overexpression of ZFP6 results in ectopic trichomes on carpels and other inflorescence organs. Gain- and loss-of-function analyses have shown that the zfp6 mutant exhibits a reduced number of trichomes in sepals of flowers, cauline leaves, lateral branch and main inflorescence stems in comparison to wild-type plants. Molecular and genetic analyses suggest that ZFP6 functions upstream of GIS, GIS2, ZFP8, ZFP5 and key trichome initiation regulators GL1 and GL3.We reveal that ZFP6 and ZFP5 mediate the regulation of trichome initiation by integrating GA and cytokinin signaling in Arabidopsis. These findings provide new insights into the molecular mechanism of plant hormone control of epidermal trichome patterning through C2H2 transcriptional factors.


Plant Physiology | 2011

Zinc Finger Protein5 Is Required for the Control of Trichome Initiation by Acting Upstream of Zinc Finger Protein8 in Arabidopsis

Zhongjing Zhou; Lijun An; Lili Sun; Shuijin Zhu; Wanyan Xi; Pierre Broun; Hao Yu; Yinbo Gan

Arabidopsis (Arabidopsis thaliana) trichome development is a model system for studying cell development, cell differentiation, and the cell cycle. Our previous studies have shown that the GLABROUS INFLORESCENCE STEMS (GIS) family genes, GIS, GIS2, and ZINC FINGER PROTEIN8 (ZFP8), control shoot maturation and epidermal cell fate by integrating gibberellins (GAs) and cytokinin signaling in Arabidopsis. Here, we show that a new C2H2 zinc finger protein, ZFP5, plays an important role in controlling trichome cell development through GA signaling. Overexpression of ZFP5 results in the formation of ectopic trichomes on carpels and other inflorescence organs. zfp5 loss-of-function mutants exhibit a reduced number of trichomes on sepals, cauline leaves, paraclades, and main inflorescence stems in comparison with wild-type plants. More importantly, it is found that ZFP5 mediates the regulation of trichome initiation by GAs. These results are consistent with ZFP5 expression patterns and the regional influence of GA on trichome initiation. The molecular analyses suggest that ZFP5 functions upstream of GIS, GIS2, ZFP8, and the key trichome initiation regulators GLABROUS1 (GL1) and GL3. Using a steroid-inducible activation of ZFP5 and chromatin immunoprecipitation experiments, we further demonstrate that ZFP8 is the direct target of ZFP5 in controlling epidermal cell differentiation.


PLOS ONE | 2014

AtEXP2 Is Involved in Seed Germination and Abiotic Stress Response in Arabidopsis

An Yan; Minjie Wu; Limei Yan; Rui Hu; Imran Ali; Yinbo Gan

Expansins are cell wall proteins that promote cell wall loosening by inducing pH-dependent cell wall extension and stress relaxation. Expansins are required in a series of physiological developmental processes in higher plants such as seed germination. Here we identified an Arabidopsis expansin gene AtEXPA2 that is exclusively expressed in germinating seeds and the mutant shows delayed germination, suggesting that AtEXP2 is involved in controlling seed germination. Exogenous GA application increased the expression level of AtEXP2 during seed germination, while ABA application had no effect on AtEXP2 expression. Furthermore, the analysis of DELLA mutants show that RGL1, RGL2, RGA, GAI are all involved in repressing AtEXP2 expression, and RGL1 plays the most dominant role in controlling AtEXP2 expression. In stress response, exp2 mutant shows higher sensitivity than wild type in seed germination, while overexpression lines of AtEXP2 are less sensitive to salt stress and osmotic stress, exhibiting enhanced tolerance to stress treatment. Collectively, our results suggest that AtEXP2 is involved in the GA-mediated seed germination and confers salt stress and osmotic stress tolerance in Arabidopsis.


Current Biology | 2010

SPATULA Links Daytime Temperature and Plant Growth Rate

Kate Sidaway-Lee; Eve-Marie Josse; Alanna Brown; Yinbo Gan; Karen J. Halliday; Ian A. Graham; Steven Penfield

Plants exhibit a wide variety of growth rates that are known to be determined by genetic and environmental factors, and different plants grow optimally at different temperatures, indicating that this is a genetically determined character. Moderate decreases in ambient temperature inhibit vegetative growth, but the mechanism is poorly understood, although a decrease in gibberellin (GA) levels is known to be required. Here we demonstrate that the basic helix-loop-helix transcription factor SPATULA (SPT), previously known to be a regulator of low temperature-responsive germination, mediates the repression of growth by cool daytime temperatures but has little or no growth-regulating role under warmer conditions. We show that only daytime temperatures affect vegetative growth and that SPT couples morning temperature to growth rate. In seedlings, warm temperatures inhibit the accumulation of the SPT protein, and SPT autoregulates its own transcript abundance in conjunction with diurnal effects. Genetic data show that repression of growth by SPT is independent of GA signaling and phytochrome B, as previously shown for PIF4. Our data suggest that SPT integrates time of day and temperature signaling to control vegetative growth rate.


Plant Journal | 2013

The effects of DELLAs on growth change with developmental stage and brassinosteroid levels

Jodi L. Stewart Lilley; Yinbo Gan; Ian A. Graham; Jennifer L. Nemhauser

There are two stages in photomorphogenesis. First, seedlings detect light and open their cotyledons. Second, seedlings optimize their light environment by controlled elongation of the seedling stem or hypocotyl. In this study, we used time-lapse imaging to investigate the relationship between the brassinosteroid (BR) and gibberellin (GA) hormones across both stages of photomorphogenesis. During the transition between one stage and the other, growth promotion by BRs and GAs switched from an additive to a synergistic relationship. Molecular genetic analysis revealed unexpected roles for known participants in the GA pathway during this period. Members of the DELLA family could either repress or enhance BR growth responses, depending on developmental stage. At the transition point for seedling growth dynamics, the BR and GA pathways had opposite effects on DELLA protein levels. In contrast to GA-induced DELLA degradation, BR treatments increased the levels of REPRESSOR of ga1-3 (RGA) and mimicked the molecular effects of stabilizing DELLAs. In addition, DELLAs showed complex regulation of genes involved in BR biosynthesis, implicating them in BR homeostasis. Growth promotion by GA alone depended on the PHYTOCHROME INTERACTING FACTOR (PIF) family of master growth regulators. The effects of BR, including the synergistic effects with GA, were largely independent of PIFs. These results point to a multi-level, dynamic relationship between the BR and GA pathways.


Development | 2014

The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS AFFECTING FLOWERING genes in Arabidopsis

Lisha Shen; Zhonghui Thong; Ximing Gong; Qing Shen; Yinbo Gan; Hao Yu

Polycomb group proteins play essential roles in the epigenetic control of gene expression in plants and animals. Although some components of Polycomb repressive complex 1 (PRC1)-like complexes have recently been reported in the model plant Arabidopsis, how they contribute to gene repression remains largely unknown. Here we show that a putative PRC1 RING-finger protein, AtRING1A, plays a hitherto unknown role in mediating the transition from vegetative to reproductive development in Arabidopsis. Loss of function of AtRING1A results in the late-flowering phenotype, which is attributed to derepression of two floral repressors, MADS AFFECTING FLOWERING 4/5 (MAF4/5), which in turn downregulate two floral pathway integrators, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1. Levels of the H3K27me3 repressive mark at MAF4 and MAF5 loci, which is deposited by CURLY LEAF (CLF)-containing PRC2-like complexes and bound by LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), are affected by AtRING1A, which interacts with both CLF and LHP1. Levels of the H3K4me3 activation mark correlate inversely with H3K27me3 levels at MAF4 and MAF5 loci. Our results suggest that AtRING1A suppresses the expression of MAF4 and MAF5 through affecting H3K27me3 levels at these loci to regulate the floral transition in Arabidopsis.

Collaboration


Dive into the Yinbo Gan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Yu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

An Yan

National Institute of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge