Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying C. Henderson is active.

Publication


Featured researches published by Ying C. Henderson.


Journal of Clinical Oncology | 1998

Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma.

Gary L. Clayman; Adel K. El-Naggar; Scott M. Lippman; Ying C. Henderson; Mitchell J. Frederick; James Merritt; Louis A. Zumstein; Therese M. Timmons; Ta Jen Liu; Lawrence E. Ginsberg; Jack A. Roth; Waun Ki Hong; Patricia Bruso; Helmuth Goepfert

PURPOSE Standard therapies of head and neck squamous cell carcinoma (HNSCC) often cause profound morbidity and have not significantly improved survival over the last 30 years. Preclinical studies showed that adenoviral vector delivery of the wild-type p53 gene reduced tumor growth in mouse xenograft models. Our purpose was to ascertain the safety and therapeutic potential of adenoviral (Ad)-p53 in advanced HNSCC. PATIENTS AND METHODS Patients with incurable recurrent local or regionally metastatic HNSCC received multiple intratumoral injections of Ad-p53, either with or without tumor resection. Patients were monitored for adverse events and antiadenoviral antibodies, tumors were monitored for response and p53 expression, and body fluids were analyzed for Ad-p53. RESULTS Tumors of 33 patients were injected with doses of up to 1 x 10(11) plaque-forming units (pfu). No dose-limiting toxicity or serious adverse events were noted. p53 expression was detected in tumor biopsies despite antibody responses after Ad-p53 injections. Clinical efficacy could be evaluated in 17 patients with nonresectable tumors: two patients showed objective tumor regressions of greater than 50%, six patients showed stable disease for up to 3.5 months, and nine patients showed progressive disease. One resectable patient was considered a complete pathologic response. Ad-p53 was detected in blood and urine in a dose-dependent fashion, and in sputum. CONCLUSION Patients were safely injected intratumorally with Ad-p53. Objective antitumor activity was detected in several patients. The infectious Ad-p53 in body fluids was asymptomatic, and suggests that systemic or regional treatment may be tolerable. These results suggest the further investigation of Ad-p53 as a therapeutic agent for patients with HNSCC.


American Journal of Pathology | 2000

In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue.

Mitchell J. Frederick; Ying C. Henderson; Xiao Chun Xu; Michael T. Deavers; Aysegul A. Sahin; Hong Wu; Dorothy E. Lewis; Adel K. El-Naggar; Gary L. Clayman

Using differential display, we cloned a gene with reduced expression in short-term explants of head and neck squamous cell carcinoma (HNSCC) tumors compared to cultured normal oral epithelial cells. The differentially expressed gene was identical to the recently cloned CXC chemokine BRAK, which is ubiquitously expressed in normal tissue extracts but is absent from many tumor cell lines in vitro. To define the cell populations expressing BRAK in vivo, in situ mRNA hybridization was performed on normal and cancerous tissues from six different histological sites. The predominant normal cell type constitutively expressing BRAK in vivo was squamous epithelium. Expression in tumors was heterogeneous, with the majority of HNSCCs and some cervical squamous cell carcinomas (SCCs) showing loss of BRAK mRNA. Although absent in unstimulated peripheral blood mononuclear cells, high levels of BRAK were consistently found in infiltrating inflammatory cells (with lymphocyte morphology) in nearly all cancers examined. Furthermore, BRAK expression was demonstrated in B cells and monocytes, after stimulation of peripheral blood mononuclear cells with lipopolysaccharide. This study demonstrates for the first time up-regulation of BRAK mRNA by inflammatory cells in the tumor microenvironment and lost expression from certain cancers in vivo. The data suggest that BRAK may have a role in host-tumor interactions.


Clinical Cancer Research | 2011

Assembly and Initial Characterization of a Panel of 85 Genomically Validated Cell Lines from Diverse Head and Neck Tumor Sites

Mei Zhao; Daisuke Sano; Curtis R. Pickering; Samar A. Jasser; Ying C. Henderson; Gary L. Clayman; Erich M. Sturgis; Thomas J. Ow; Reuben Lotan; Thomas E. Carey; Peter G. Sacks; Jennifer R. Grandis; David Sidransky; Nils Erik Heldin; Jeffrey N. Myers

Purpose: Human cell lines are useful for studying cancer biology and preclinically modeling cancer therapy, but can be misidentified and cross-contamination is unfortunately common. The purpose of this study was to develop a panel of validated head and neck cell lines representing the spectrum of tissue sites and histologies that could be used for studying the molecular, genetic, and phenotypic diversity of head and neck cancer. Methods: A panel of 122 clinically and phenotypically diverse head and neck cell lines from head and neck squamous cell carcinoma, thyroid cancer, cutaneous squamous cell carcinoma, adenoid cystic carcinoma, oral leukoplakia, immortalized primary keratinocytes, and normal epithelium was assembled from the collections of several individuals and institutions. Authenticity was verified by carrying out short tandem repeat analysis. Human papillomavirus (HPV) status and cell morphology were also determined. Results: Eighty-five of the 122 cell lines had unique genetic profiles. HPV-16 DNA was detected in 2 cell lines. These 85 cell lines included cell lines from the major head and neck primary tumor sites, and close examination shows a wide range of in vitro phenotypes. Conclusions: This panel of 85 genomically validated head and neck cell lines represents a valuable resource for the head and neck cancer research community that can help advance understanding of the disease by providing a standard reference for cell lines that can be used for biological as well as preclinical studies. Clin Cancer Res; 17(23); 7248–64. ©2011 AACR.


Clinical Cancer Research | 2009

High Rate of BRAF and RET/PTC Dual Mutations Associated with Recurrent Papillary Thyroid Carcinoma

Ying C. Henderson; Thomas D. Shellenberger; Michelle D. Williams; Adel K. El-Naggar; Mitchell J. Fredrick; Kathleen Cieply; Gary L. Clayman

Purpose: Papillary thyroid carcinoma (PTC), the most common thyroid malignancy, usually possesses BRAF mutation or rearranged in translation (RET)/PTC rearrangements. PTC usually possesses BRAF mutation or RET/PTC rearrangements. The mutation status of patients with recurrent PTC has never been characterized in a large population. Experimental Design: Mutation status was determined in a cohort of 54 patients with recurrent PTC and analyzed for clinicopathologic relationships. BRAF and ras mutations were determined by PCR and sequencing of genomic DNA. RET/PTC rearrangements were analyzed by reverse transcription-PCR. Results: BRAF mutation in exon 15 (V600E) was found in 42/54 (77.8%) recurrent PTC patients. The RET/PTC rearrangements were detected in 9 of 54 (16.7%) patients. In addition, 5 of 54 (9.3%) recurrent PTC patients had both a BRAF mutation and a RET/PTC rearrangement. The prevalence of tumors with dual mutations found in the recurrent population far exceeds the frequency historically reported for patients with primary PTC. Patients with dual mutations were significantly older (80% older than 45 years) than patients with a BRAF mutation alone (38% older than 45 years). Conclusions: Recurrent PTC is significantly associated with a predominant BRAF mutation. RET/PTC rearrangements, although commonly associated with primary PTCs in younger patients, are uncommonly found in recurrent PTC patients. In addition, the incidence of dual mutations was higher in patients with recurrent PTC than in those primary PTC, as reported by others.


Molecular Cancer Therapeutics | 2010

MEK Inhibitor PD0325901 Significantly Reduces the Growth of Papillary Thyroid Carcinoma Cells In vitro and In vivo

Ying C. Henderson; Yunyun Chen; Mitchell J. Frederick; Stephen Y. Lai; Gary L. Clayman

Papillary thyroid carcinomas (PTC) are the most common type of thyroid malignancy. Most PTC carry one of the two mutations, RET/PTC rearrangement or BRAF mutation. Both mutations are able to activate the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling transduction pathway leading to cellular proliferation, differentiation, and apoptosis. PD0325901 is a specific MEK1/2 inhibitor and therefore is a promising drug to treat thyroid cancers with either RET/PTC or BRAF mutation. In this study we tested the effects of PD0325901 on PTC cells harboring either mutation in vitro by growth curves and Western blots and in vivo using a murine orthotopic xenograft model. We found that 50% growth inhibition (GI50) by PD0325901 was 11 nmol/L for the PTC cells with the RET/PTC1 rearrangement and 6.3 nmol/L for PTC cells with a BRAF mutation, with both concentrations readily achievable in serum. After 1 week of oral administration of PD0325901 (20–25 mg/kg/day) in mice, no tumor growth was detected in mice inoculated with PTC cells bearing a BRAF mutation. For PTC with the RET/PTC1 rearrangement, the average tumor volume of the orthotopic tumor was reduced by 58% as compared with controls. In conclusion, our data suggested that PTC cells carrying a BRAF mutation were more sensitive to PD0325901 than were PTC cells carrying the RET/PTC1 rearrangement. Our findings support the clinical evaluation of PD0325901 for patients with PTC and potentially other carcinomas with BRAF mutations. Mol Cancer Ther; 9(7); 1968–76. ©2010 AACR.


Clinical Cancer Research | 2011

Targeted Therapy of VEGFR2 and EGFR Significantly Inhibits Growth of Anaplastic Thyroid Cancer in an Orthotopic Murine Model

Maria K. Gule; Yunyun Chen; Daisuke Sano; Mitchell J. Frederick; Ge Zhou; Mei Zhao; Zvonimir L. Milas; Chad E. Galer; Ying C. Henderson; Samar A. Jasser; David L. Schwartz; James A. Bankson; Jeffrey N. Myers; Stephen Y. Lai

Purpose: Anaplastic thyroid carcinoma (ATC) is one of the most lethal human cancers with a median survival of 6 months. The inhibition of epidermal growth factor receptor (EGFR) alone, or with VEGF receptor 2 (VEGFR2), represents an attractive approach for treatment of ATC. Several reports have examined agents that target these receptors. However, with the misidentification of as many as 60% of all commonly used ATC cell lines, the significance of these past findings is unclear. Experimental Design: Cell lines authenticated by short tandem repeat profiling were selected to establish xenograft tumors in an orthotopic murine model of ATC. These mice were then treated with vandetanib to evaluate its effects on ATC tumor growth. Dynamic contrast-enhanced (DCE) MRI was utilized to measure the impact of vandetanib on tumor vasculature. Results: Vandetanib inhibited tumor growth of the ATC cell lines Hth83 and 8505C in vivo by 69.3% (P < 0.001) and 66.6% (P < 0.05), respectively, when compared with control. Significant decreases in vascular permeability (P < 0.01) and vascular volume fraction (P < 0.05) were detected by DCE-MRI in the orthotopic xenograft tumors after 1 week of treatment with vandetanib as compared with control. Conclusion: The inhibition of EGFR and VEGFR2 by vandetanib and its tremendous in vivo antitumor activity against ATC make it an attractive candidate for further preclinical and clinical development for the treatment of this particularly virulent cancer, which remains effectively untreatable. Vandetanib disrupts angiogenesis and DCE-MRI is an effective method to quantify changes in vascular function in vivo. Clin Cancer Res; 17(8); 2281–91. ©2011 AACR.


Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2009

AURORA KINASE A INHIBITION AND PACLITAXEL AS TARGETED COMBINATION THERAPY FOR HEAD AND NECK SQUAMOUS CELL CARCINOMA

Abhijit Mazumdar; Ying C. Henderson; Adel K. El-Naggar; Subrata Sen; Gary L. Clayman

Aurora kinase A (AURKA) is amplified with varying incidence in multiple human cancers including head and neck squamous cell carcinoma (HNSCC). We investigated whether AURKA is a potential therapeutic target in HNSCC.


Cancer Gene Therapy | 1999

Apoptosis induction by E2F-1 via adenoviral-mediated gene transfer results in growth suppression of head and neck squamous cell carcinoma cell lines

Ta Jen Liu; Mary Wang; Randall L. Breau; Ying C. Henderson; Adel K. El-Naggar; Kimberly D. Steck; Michael W. Sicard; Gary L. Clayman

E2F-1, a transcription factor by discovery, is thought to play a crucial role in regulating G1/S cell cycle progression. Its activity is modulated by complex formation with the retinoblastoma protein and related proteins. Overexpression of E2F-1 has been shown to induce apoptosis in quiescent fibroblasts. We constructed a recombinant E2F-1 adenovirus to test whether an overexpression of E2F-1 in head and neck squamous cell carcinoma cell lines would also induce apoptosis. Two cell lines, Tu-138 and Tu-167, were chosen for use in this study. Both cell lines harbor p53 mutations but express different levels of the retinoblastoma protein. Upon E2F-1 adenovirus infection, both cell lines expressed elevated levels of E2F-1 protein and then activated a pRb-chloramphenicol acetyltransferase reporter construct containing an E2F-1 binding motif. In vitro growth assay demonstrated that growth suppression by the E2F-1 protein was effective on both cell lines. Results from DNA fragmentation and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling analyses indicated apoptosis induction in cells infected with AdCMV-E2F-1. Moreover, ex vivo experiments in nude mice showed total suppression of tumor growth at sites that received cells infected AdCMV-E2F-1. An in vivo analysis of apoptosis using in situ end-labeling further demonstrated the induction of apoptosis by AdCMV-E2F-1 in tumor-bearing animals. These data indicate that overexpression of E2F-1 via an adenoviral vector suppresses in vitro and in vivo growth of head and neck squamous carcinoma cell lines through induction of apoptosis.


Clinical Cancer Research | 2008

Sorafenib Potently Inhibits Papillary Thyroid Carcinomas Harboring RET/PTC1 Rearrangement

Ying C. Henderson; Soon-Hyun Ahn; Ya'an Kang; Gary L. Clayman

Purpose: Papillary thyroid carcinomas (PTC) are the most common type of thyroid malignancy with one of the two mutations, RET/PTC rearrangement or BRAF mutation. Both mutations are able to activate the MEK/ERK signaling transduction pathway and result in the activation of transcription factors that regulate cellular proliferation, differentiation, and apoptosis. Sorafenib (Nexavar, BAY 43-9006) is a multikinase inhibitor, and in this study, we tested its effects on PTC cells carrying either mutation. Experimental Design: The effects of sorafenib on cell proliferation and signaling were evaluated in vitro on PTC cells using growth curves, cell cycle analysis, and immunoblotting. Using an orthotopic mouse model, we determined the antitumor effects of sorafenib in vivo. Results: The concentration needed for 50% growth inhibition (GI50) by sorafenib was 0.14 μmol/L for the PTC cells with the RET/PTC1 rearrangement, and 2.5 μmol/L for PTC cells with a BRAF mutation, both readily achievable serum concentrations. After 3 weeks of oral administration of sorafenib (80 mg/kg/d) in mice, small (94% reduction compared with controls) or no tumor growth was detected in mice inoculated with PTC cells bearing the RET/PTC1 rearrangement, whereas the tumor volume of the orthotopic tumor implants of PTC cells with a BRAF mutation was reduced 53% to 54% (as compared with controls). Conclusions: PTC cells carrying the RET/PTC1 rearrangement were more sensitive to sorafenib than PTC cells carrying a BRAF mutation. Because RET/PTC rearrangements are unique to thyroid carcinomas, our findings support the clinical evaluation of sorafenib for patients with PTC and the identification of patients most likely to respond to sorafenib treatment.


Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2000

Telomerase activity in head and neck tumors after introduction of wild- type p53, p21, p16, and E2F-1 genes by means of recombinant adenovirus

Ying C. Henderson; Randall L. Breau; Ta Jen Liu; Gary L. Clayman

Telomerase (reverse transcriptase) has been shown to play a role in the process of cellular immortalization.

Collaboration


Dive into the Ying C. Henderson's collaboration.

Top Co-Authors

Avatar

Gary L. Clayman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mitchell J. Frederick

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Adel K. El-Naggar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Arumugam Jayakumar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mary Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Stephen Y. Lai

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kenji Mitsudo

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Katrina Briggs

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Shellenberger

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ya'an Kang

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge