Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying Chi is active.

Publication


Featured researches published by Ying Chi.


Clinical Immunology | 2010

Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism

Ke Chen; Ding Wang; Wei Ting Du; Zhi-Bo Han; He Ren; Ying Chi; Shao Guang Yang; Delin Zhu; Francis Bayard; Zhong Chao Han

Human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) constitute an attractive alternative to bone-marrow-derived MSCs for potential clinical applications because of easy preparation and lower risk of viral contamination. In this study, both proliferation of human peripheral blood mononuclear cells (hPBMCs) and their IFN-gamma production in response to mitogenic or allogeneic stimulus were effectively inhibited by hUC-MSCs. Co-culture experiments in transwell systems indicated that the suppression was largely mediated by soluble factor(s). Blocking experiments identified prostaglandin E(2) (PGE(2)) as the major factor, because inhibition of PGE(2) synthesis almost completely mitigated the immunosuppressive effects, whereas neutralization of TGF-beta, IDO, and NO activities had little effects. Moreover, the inflammatory cytokines, IFN-gamma and IL-1beta, produced by hPBMCs upon activation notably upregulated the expression of cyclooxygenase-2 (COX-2) and the production of PGE(2) by hUC-MSCs. In conclusion, our data have demonstrated for the first time the PGE(2)-mediated mechanism by which hUC-MSCs exert their immunomodulatory effects.


PLOS ONE | 2013

CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties.

Zhou Xin Yang; Zhi-Bo Han; Yue Ru Ji; You Wei Wang; Lu Liang; Ying Chi; Shao Guang Yang; Li Na Li; Wei Feng Luo; Jianping Li; Dan Dan Chen; Wen Jing Du; Xiao Cang Cao; Guang Sheng Zhuo; Tao Wang; Zhong Chao Han

Mesenchymal stem cells (MSCs) reside in almost all of the body tissues, where they undergo self-renewal and multi-lineage differentiation. MSCs derived from different tissues share many similarities but also show some differences in term of biological properties. We aim to search for significant differences among various sources of MSCs and to explore their implications in physiopathology and clinical translation. We compared the phenotype and biological properties among different MSCs isolated from human term placental chorionic villi (CV), umbilical cord (UC), adult bone marrow (BM) and adipose (AD). We found that CD106 (VCAM-1) was expressed highest on the CV-MSCs, moderately on BM-MSCs, lightly on UC-MSCs and absent on AD-MSCs. CV-MSCs also showed unique immune-associated gene expression and immunomodulation. We thus separated CD106+cells and CD106−cells from CV-MSCs and compared their biological activities. Both two subpopulations were capable of osteogenic and adipogenic differentiation while CD106+CV-MSCs were more effective to modulate T helper subsets but possessed decreased colony formation capacity. In addition, CD106+CV-MSCs expressed more cytokines than CD106−CV-MSCs. These data demonstrate that CD106 identifies a subpopulation of CV-MSCs with unique immunoregulatory activity and reveal a previously unrecognized mechanism underlying immunomodulation of MSCs.


Cellular Physiology and Biochemistry | 2015

Inhibition of Notch Signaling Promotes the Adipogenic Differentiation of Mesenchymal Stem Cells Through Autophagy Activation and PTEN-PI3K/AKT/mTOR Pathway.

Baoquan Song; Ying Chi; Xue Li; Wenjing Du; Zhi-Bo Han; Jianjian Tian; Juanjuan Li; Fang Chen; Hehe Wu; Li-xin Han; Shihong Lu; Yi-zhou Zheng; Zhongchao Han

Background: The Notch signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. This study was designed to determine the role of Notch signaling in adipogenic differentiation of human bone marrow derived MSCs (BM-MSCs). Methods: The Notch signaling was inhibited by the γ-secretase inhibitor N-[N-(3,5-difluor- ophenacetyl-L-alanyl)]-S-phenylglycine t-butylester (DAPT). The markers involving adipogenic differentiation of MSCs, the relative pathway PTEN-PI3K/Akt/mTOR and autophagy activation were then analyzed. Furthermore, the autophagy inhibitor chloroquine (CQ) and 3-methyladenine (3-MA) were used to study the role of autophagy in the DAPT-induced the adipogenic differentiation of MSCs. Results: We first confirmed the down -regulation of Notch gene expression during MSCs adipocyte differentiation, and showed that the inhibition of Notch signaling significantly enhanced adipogenic differentiation of MSCs. Furthermore, Notch inhibitor DAPT induced early autophagy by acting on PTEN-PI3K/Akt/mTOR pathway. The autophagy inhibitor CQ and 3-MA dramatically abolished the effects of DAPT-induced autophagy and adipogenic differentiation of MSCs. Conclusion: Our results indicate that inhibition of Notch signaling could promote MSCs adipogenesis mediated by autophagy involving PTEN-PI3K/Akt/mTOR pathway. Notch signaling could be a novel target for regulating the adipogenic differentiation of MSCs.


Experimental Cell Research | 2010

CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

Ding Wang; Ke Chen; Wei Ting Du; Zhi-Bo Han; He Ren; Ying Chi; Shao Guang Yang; Francis Bayard; Delin Zhu; Zhong Chao Han

Here, the effect of CD14(+) monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-gamma (IFN-gamma) secretion capacities of CD4(+) and CD8(+) T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E(2) (PGE(2)) as an important soluble mediator. CD14(+) monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1beta, either exogenously added or produced by CD14(+) monocytes in culture, could trigger expression of high levels of PGE(2) by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE(2) expression, but also reversed the promotional effect of CD14(+) monocytes and partially restored CD4(+) and CD8(+) T cell proliferation and IFN-gamma secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.


Cytotherapy | 2010

No contribution of umbilical cord mesenchymal stromal cells to capillarization and venularization of hepatic sinusoids accompanied by hepatic differentiation in carbon tetrachloride-induced mouse liver fibrosis

Hongying Ren; Qinjun Zhao; Tao Cheng; Shihong Lu; Zhong Chen; Lei Meng; Xiaofan Zhu; Shaoguang Yang; Wen Xing; Yongdi Xiao; Qian Ren; Ying Chi; Dongsheng Gu; Renchi Yang; Zhong Chao Han

BACKGROUND AIMS The acceleration of capillarization and venularization of hepatic sinusoids after cell therapy would not be beneficial to restoration after liver disease. The goal was to observe the effects of umbilical cord (UC)-derived mesenchymal stromal cells (MSC) on liver microcirculation and their therapeutic potential in liver fibrosis. METHODS Human UC MSC labeled with or without CM-DIL were transplanted into NOD/SCID mice with carbon tetrachloride (CCl4)-induced chronic liver fibrosis models. Because of the high autofluorescence on the injured liver sections, we used immunohistochemistry, Western blot and reverse transcriptase-polymerase chain reaction (RT-PCR), but not immunofluorescence, in order to avoid false images under a confocal fluorescence microscope. RESULTS Human-specific alpha-fetoprotein and albumin mRNA and proteins were detected in CCl4-treated mouse livers receiving human UC MSC transplants. We only observed the gene expression of human-specific endothelial-like cells markers CD31 and KDR by RT-PCR, but not protein expression by immunohistochemistry, in UC MSC-transplanted mouse livers. Vascular endothelial growth factor (VEGF) expression in injured livers 4 weeks after UC MSC transplantation was higher than in normal livers. However, UC MSC injection did not increase significantly the vascular density labeled by CD31 and (vWF) in the injured livers of UC MSC-transplanted mice compared with non-transplanted mice after CCl4 treatment. In addition, liver function was partly improved after UC MSC transplantation. CONCLUSIONS Human UC MSC can differentiate into hepatocyte-like cells but do not accelerate the capillarization and venularization of hepatic sinusoids, finally leading to the partial improvement of liver function in mice with CCl4-mediated chronic liver fibrosis.


Cellular Physiology and Biochemistry | 2012

Mesenchymal Stem Cells Support Proliferation and Terminal Differentiation of B Cells

Yue Ru Ji; Zhou Xin Yang; Zhi-Bo Han; Lei Meng; Lu Liang; Xiao Ming Feng; Shao Guang Yang; Ying Chi; Dan Dan Chen; You Wei Wang; Zhong Chao Han

Background: Mesenchymal stem cells (MSC) play important roles in modulating the activities of T lymphocytes, dendritic cells and natural killer cells. These immunoregulatory properties of MSC suggest their therapeutic potential in autoimmune diseases. However, the effects of MSC on B cells are still poorly understood. The present study was designed to investigate the interaction between MSC and B cells both in vitro and in vivo, and to determine the possible mechanism of action. Design and Method: The effect of human umbilical cord mesenchymal stem cells (UC-MSC) on proliferation and differentiation of B-cells were characterized in vitro, and we also tested the immunoregulatory properties of mouse bone marrow MSC (BM-MSC) on T cell dependent and independent antibody production in vivo in mice. Results: Treatment with human UC-MSC resulted in an increase of proliferation, differentiation of B cells into plasma cells and production of antibodies in vitro. Mouse BM-MSC significantly enhanced T cell dependent and independent antibodies production in vivo in mice. PGE2 partially mediated the immunosuppressive activity of human UC-MSC but IL-6 did not regulate this activity. Conclusion: MSC promote proliferation and differentiation of B cells in vitro and in vivo partially through PGE2 but not IL-6.


Cell Transplantation | 2015

Human Umbilical Cord Mesenchymal Stem Cells Promote Breast Cancer Metastasis by Interleukin-8- and Interleukin-6-Dependent Induction of CD44(+)/CD24(-) Cells.

Fengxia Ma; Dandan Chen; Fang Chen; Ying Chi; Zhi-Bo Han; Xiaoming Feng; Xue Li; Zhongchao Han

Although emerging evidence links mesenchymal stem cells (MSCs) with cancer metastasis, the underlying mechanisms are poorly understood. In the present study, we found that human umbilical cord-derived MSCs (UC-MSCs) promoted MCF-7 cell migration in vitro and metastasis in vivo. To explore the mechanisms, the characteristics of MCF-7 cells cocultured with UC-MSCs were assessed. The expression and secretion of interleukin-8 (IL-8) and IL-6 were induced in MCF-7 cells cocultured with UC-MSCs. However, neutralization of IL-8 or IL-6 secreted by UC-MSCs could attenuate the enhanced expression of IL-8 and IL-6 in MCF-7 cells cocultured with UC-MSCs, which subsequently alleviated the enhanced migration. Similar to UC-MSCs, exogenous human recombinant IL-8 or IL-6 also promoted IL-8 and IL-6 expression and MCF-7 cell migration. In addition to enhanced IL-8 and IL-6 expression, MCF-7 cells cocultured with UC-MSCs displayed enhanced mammosphere-forming ability and increased percentage of CD44+/CD24- cells. However, epithelial-to-mesenchymal transition (EMT) was not observed in MCF-7 cells cocultured with UC-MSCs. Taken together, these results suggested that IL-8 and IL-6 secreted by UC-MSCs activated the autocrine IL-8 and IL-6 signaling in MCF-7 cells and induced CD44+/CD24- cells, which subsequently promoted MCF-7 cell migration in vitro and metastasis in vivo.


Cytotherapy | 2013

Expression and role of Toll-like receptors on human umbilical cord mesenchymal stromal cells

Dandan Chen; Fengxia Ma; Shuxia Xu; Shaoguang Yang; Fang Chen; Lijuan Rong; Ying Chi; Qinjun Zhao; Shihong Lu; Zhi-Bo Han; Aiming Pang; Zhongchao Han

BACKGROUND AIMS Toll-like receptors (TLRs) play an important role in innate and adaptive immunity by recognizing pathogen-associated molecular patterns (PAMPs). METHODS In the present study, we investigated the expression and role of TLRs on human umbilical cord mesenchymal stromal cells (UC-MSCs). The proliferation, differentiation and immunoregulatory activity of UC-MSCs primed with or without TLR ligands were determined. RESULTS At the RNA level, the expression of TLR2, 4, 6 and 9 was relatively higher than that of other TLRs. However, TLR3 and TLR4 expression were relatively higher at the protein level. UC-MSCs expressed functional TLRs by nuclear factor-κB activation and cytokine expression assay. Poly-inosinic acid:cytidylic acid [Poly(I:C)] stimulation inhibited the proliferation of UC-MSCs, but the ligand of other TLRs had no significant effect. Poly(I:C) stimulation enhanced the adipogenic differentiation capability of UC-MSCs, but lipopolysaccharide inhibited the adipogenic differentiation. Poly(I:C) and CpG-oligonucleotide promoted the immunosuppressive potentiality of UC-MSCs, accompanied with the phosphorylation of interferon regulatory factor 3 (IRF3) and increased expression of indoleamine 2,3-dioxygenase and interferon β, whereas activation of other TLR ligands (synthetic analog fibroblast-stimulating lipopeptide-1 and lipopolysaccharide) failed to affect the immunoregulatory activity of UC-MSCs. CONCLUSIONS Taken together, our data demonstrated that TLR activation influenced the function of UC-MSCs, which might have important implications in future efforts to explore the clinical potentials of UC-MSCs.


Blood Cells Molecules and Diseases | 2015

Aberrant expression and significance of OCT-4A transcription factor in leukemia cells.

Qinjun Zhao; Hongying Ren; Sizhou Feng; Ying Chi; Yi He; Donglin Yang; Fengxia Ma; Jianping Li; Shihong Lu; Fang Chen; Jianhui Xu; Shaoguang Yang; Zhongchao Han

OBJECTIVE To determine the contribution of the OCT-4 to the pathogenesis of leukemia. METHODS Bone marrow (BM) samples obtained from 72 patients with leukemia, and 18 normal healthy subjects were assayed for their OCT-4 expression using both flow cytometry and RT-PCR. RESULTS OCT-4 expression in BM nucleated cells of acute leukemia patients (n=33) was significantly higher than that of complete remission and chronic phase leukemia patients (n=39, p<0.001) and healthy donors (n=18, p<0.001). OCT-4 expression had a significant positive relation with CD34 expression (n=43, r=0.721, p<0.001) and the proportion of naive cells (n=60, r=0.687, p<0.001). In addition, the results of QRT-PCR detection showed that the OCT-4A had increased expression in BM nucleated cells in the patients with acute leukemia (n=33, median 16.585, range 0.38-169.62) compared to that in leukemia patients with chronic phase and in complete remission (n=39, median 3.34, range 0.04-44.49, p<0.001) and that of normal controls (n=18, median 2.89, range 0.18-16.23, p<0.001). CONCLUSION OCT-4A expression was significantly increased in the BM nucleated cells of patients with acute leukemia, indicating that OCT-4A may play an important role in the pathogenesis of leukemia and may serve as a molecular target for the development of novel diagnostic and treatment strategies in leukemia.


Cytotherapy | 2013

The expression and role of miR-301a in human umbilical cord-derived mesenchymal stromal cells

Fengxia Ma; Dandan Chen; Ying Chi; Fang Chen; Xue Li; Zhongchao Han

BACKGROUND AIMS Toll-like receptors (TLRs) are expressed in human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), and activation of TLRs plays an important role in proliferation, differentiation and immunoregulatory activity of UC-MSCs. We investigated whether TLRs regulated the expression of microRNAs (miRNAs) in UC-MSCs and the role of miRNAs. METHODS AND RESULTS With miRNA microarray analysis, we demonstrated that the expression of many miRNAs varied when UC-MSCs were stimulated with the ligand of toll-like receptor 4 (TLR4), lipopolysaccharide (LPS). The expression of some miRNAs was verified by polymerase chain reaction. It was found that microRNA-301a (miR-301a) was up-regulated by the ligands of TLR3 and TLR4, LPS and polyinosinic acid:polycytidylic acid poly(I:C). However, the inhibitors of nuclear factor κB NF-κB and interferon regulatory factor 3 IRF3 signal attenuated the effect of LPS and poly(I:C) on miR-301a expression. Over-expression or lower expression of miR-301a affected the cytokine secretion of UC-MSCs. CONCLUSIONS The expression of miR-301a in UC-MSCs was regulated by TLRs, and miR-301a affected the cytokine secretion of UC-MSCs.

Collaboration


Dive into the Ying Chi's collaboration.

Top Co-Authors

Avatar

Zhong Chao Han

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Lu Liang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shihong Lu

Academy of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenjing Du

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Baoquan Song

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dandan Chen

Academy of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge