Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying Duan Lei is active.

Publication


Featured researches published by Ying Duan Lei.


Water Research | 2011

Transport of polycyclic aromatic hydrocarbons and pesticides during snowmelt within an urban watershed.

Torsten Meyer; Ying Duan Lei; Frank Wania

During snowmelt events in urban watersheds large amounts of organic contaminants are mobilized, potentially affecting the quality of surface and groundwater resources. The transport of polycyclic aromatic hydrocarbons (PAHs) and two pesticides in the highly urbanized Highland Creek watershed within the city of Toronto, Canada, was investigated by sampling river water during two snowmelt periods. The dissolved and the particulate fractions were separately extracted and analyzed. While during normal flow conditions levels of the sum of nine PAHs including phenanthrene, anthracene, fluoranthene, pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, and benzo(ghi)perylene ranged between 18 and 45 ng/L, concentrations at the onset of melting varied from 550 to 4500 ng/L. Considering enhanced stream discharge rates during snowmelt the contaminant flux in the river increased by three orders of magnitude. The intensity of the melt event largely determined the extent of the PAH concentration increase in the river. The relatively water soluble pesticides chlorothalonil and lindane (γ-HCH) also tended to appear early during melting. Their enrichment in river water may be influenced by the thickness of the snow pack at the onset of melting, and the mode of melt water ablation from the snow pack to the stream, i.e. whether it occurs by overland or sub-surface flow.


Environmental Science & Technology | 2014

Measuring and modeling the salting-out effect in ammonium sulfate solutions.

Chen Wang; Ying Duan Lei; Satoshi Endo; Frank Wania

The presence of inorganic salts significantly influences the partitioning behavior of organic compounds between environmentally relevant aqueous phases, such as seawater or aqueous aerosol, and other, nonaqueous phases (gas phase, organic phase, etc.). In this study, salting-out coefficients (or Setschenow constants) (KS [M(-1)]) for 38 diverse neutral compounds in ammonium sulfate ((NH4)2SO4) solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The measured KS were all positive, varied from 0.216 to 0.729, and had standard errors in the range of 0.006-0.060. Compared to KS for sodium chloride (NaCl) in the literature, KS values for (NH4)2SO4 are always higher for the same compound, suggesting a higher salting-out effect of (NH4)2SO4. A polyparameter linear free energy relationship (pp-LFER) for predicting KS in (NH4)2SO4 solutions was generated using the experimental data for calibration. pp-LFER predicted KS agreed well with measured KS reported in the literature. KS for (NH4)2SO4 was also predicted using the quantum-chemical COSMOtherm software and the thermodynamic model AIOMFAC. While COSMOtherm generally overpredicted the experimental KS, predicted and experimental values were correlated. Therefore, a fitting factor needs to be applied when using the current version of COSMOtherm to predict KS. AIOMFAC tends to underpredict the measured KS((NH4)2SO4) but always overpredicts KS(NaCl). The prediction error is generally larger for KS(NaCl) than for KS((NH4)2SO4). AIOMFAC also predicted a dependence of KS on the salt concentrations, which is not observed in the experimental data. In order to demonstrate that the models developed and calibrated in this study can be applied to estimate Setschenow coefficients for atmospherically relevant compounds involved in secondary organic aerosol formation based on chemical structure alone, we predicted and compared KS for selected α-pinene oxidation products.


Environmental Science & Technology | 2011

Laboratory Studies on the Fate of Perfluoroalkyl Carboxylates and Sulfonates during Snowmelt

Merle M. Plassmann; Torsten Meyer; Ying Duan Lei; Frank Wania; Michael S. McLachlan; Urs Berger

Perfluoroalkyl acids (PFAAs) are anthropogenic chemicals that occur in snow from both remote and source regions. Experiments were conducted to determine how PFAAs are released from a melting snowpack. Different PFAAs eluted from the snowpack at different times, those with short chains eluting early, those with long chains eluting late. The concentrations in the meltwater of PFAAs with medium chain lengths of 6 to 9 perfluorinated carbon atoms first increased and then decreased during the melt period. Such a peak elution had not been previously observed for any other chemicals. The specific snow surface area (SSA) influenced this elution type, with peak concentrations occurring earlier in a snowpack with lower SSA. Model simulations suggested that the snow surface decrease during the melt alone was insufficient to explain the observations. It was ruled out that the calcium concentration affected PFAA sorption to the snow surface in a similar way as sorption to sediments. Adsorption coefficients of PFAAs to the snow surface were estimated by fitting the measured and modeled elution profiles.


Environmental Science & Technology | 2010

Theoretical and experimental simulation of the fate of semifluorinated n-alkanes during snowmelt.

Merle M. Plassmann; Torsten Meyer; Ying Duan Lei; Frank Wania; Michael S. McLachlan; Urs Berger

Semifluorinated n-alkanes (SFAs) are highly fluorinated anthropogenic chemicals that are released into the environment through their use in ski waxes. Nothing is known about their environmental partitioning in general and their fate during snowmelt in particular. Properties were estimated for a range of SFAs with different chain lengths and degrees of fluorination using the SPARC calculator and poly parameter linear free energy relationships (ppLFERs). The calculations resulted in very low water solubility and vapor pressures and, consequently, high log KOW and log KOA values. Artificially produced snow in a cold room was spiked with a range of SFAs and subsequently melted with infrared lamps. Melt water, particles, and air samples taken during melting were analyzed. Both calculations and experiments showed that SFAs used in ski waxes will bind to particles or snow grain surfaces during snowmelt and thus are predicted to end up on the soil surface in skiing areas.


Environmental Science & Technology | 2012

Field evaluation of a flow-through sampler for measuring pesticides and brominated flame retardants in the arctic atmosphere.

Hang Xiao; Hayley Hung; Frank Wania; Randy Lao; Edwin Sabljic; Ed Sverko; Ying Duan Lei; Phil Fellin; Enzo Barresi

A flow-through sampler (FTS) was codeployed with a super high volume active sampler (SHV) between October 2007 and November 2008 to evaluate its ability to determine the ambient concentrations of pesticides and brominated flame retardants in the Canadian High Arctic atmosphere. Nine pesticides and eight flame retardants, including three polybrominated diphenyl ether (PBDE) replacement chemicals, were frequently detected. Atmospheric concentrations determined by the two systems showed good agreement when compared on monthly and annually integrated time scales. Pesticide concentrations were normally within a factor of 3 of each other. The FTS tended to generate higher PBDE concentrations than the SHV presumably because of the entrainment of blowing snow/ice crystals or large particles. Taking into account uncertainties in analytical bias, sample volume, and breakthrough estimations, the FTS is shown to be a reliable and cost-effective method, which derives seasonally variable concentrations of semivolatile organic trace compounds at extremely remote locations that are comparable to those obtained by conventional high volume air sampling. Moreover, the large sampling volumes captured by the FTS make it suitable for the screening of new and emerging chemicals in the remote atmosphere where concentrations are usually low.


Environmental Science & Technology | 2015

Calculating Equilibrium Phase Distribution during the Formation of Secondary Organic Aerosol Using COSMOtherm

Chen Wang; Kai-Uwe Goss; Ying Duan Lei; Jonathan P. D. Abbatt; Frank Wania

Challenges in the parametrization of compound distribution between the gas and particle phase contribute significantly to the uncertainty in the prediction of secondary organic aerosol (SOA) formation and are rooted in the complexity and variability of atmospheric condensed matter, which includes water, salts, and a multitude of organic oxidation products, often in two separated phases. Here, we explore the use of the commercial quantum-chemistry-based software COSMOtherm to predict equilibrium partitioning and Setchenow coefficients of a suite of oxidation products of α-pinene ozonolysis in an aerosol that is assumed to separate into an organic-enriched phase and an electrolyte-enriched aqueous phase. The predicted coefficients are used to estimate the phase distribution of the organic compounds, water and ammonium sulfate, the resulting phase composition, and the SOA yield. Four scenarios that differ in terms of organic loading, liquid water content, and chemical aging are compared. The organic compounds partition preferentially to the organic phase rather than the aqueous phase for the studied aerosol scenarios, partially due to the salting-out effect. Extremely low volatile organic compounds are predicted to be the dominant species in the organic aerosols at low loadings and an important component at higher loadings. The highest concentration of oxidation products in the condensed phase is predicted for a scenario assuming the presence of non-phase-separated cloud droplets. Partitioning into an organic aerosol phase composed of the oxidation products is predicted to be similar to partitioning into a phase composed of a single organic surrogate molecule, suggesting that the calculation procedure can be simplified without major loss of accuracy. COSMOtherm is shown to produce results that are comparable to those obtained using group contribution methods. COSMOtherm is likely to have a much larger application domain than those group contribution methods because it is based on fundamental principles with little calibration.


Environmental Science & Technology | 2017

Assessing the Source-to-Stream Transport of Benzotriazoles during Rainfall and Snowmelt in Urban and Agricultural Watersheds

Abha Parajulee; Ying Duan Lei; Amila O. De Silva; Xiaoshu Cao; Carl P. J. Mitchell; Frank Wania

While benzotriazoles (BTs) are ubiquitous in urban waters, their sources and transport remain poorly characterized. We aimed to elucidate the origin and hydrological pathways of BTs in Toronto, Canada, by quantifying three BTs, electrical conductivity, and δ18O in high-frequency streamwater samples taken during two rainfall and one snowmelt event in two watersheds with contrasting levels of urbanization. Average concentrations of total BTs (∑BT) were 1.3 to 110 times higher in the more urbanized Mimico Creek watershed relative to the primarily agricultural and suburban Little Rouge Creek. Strong correlations between upstream density of major roads and total BT concentrations or BT composition within all events implicate vehicle fluids as the key source of BTs in both watersheds. Sustained historical releases of BTs within the Mimico Creek watershed have likely led to elevated ∑BT in groundwater, with elevated concentrations observed during baseflow that are diluted by rainfall and surface runoff. In contrast, relatively constant concentrations, caused by mixing of equally contaminated baseflow and rainfall/surface runoff, are observed in the Little Rouge Creek throughout storm hydrographs, with an occasional first flush occurring at a subsite draining suburban land. During snowmelt, buildup of BTs in roadside snowpiles and preferential partitioning of BTs to the liquid phase of a melting snowpack leads to early peaks in ∑BT in both streams, except the sites in the Little Rouge Creek with low levels of vehicle traffic. Overall, a history of BT release and land use associated with urbanization have led to higher levels of BTs in urban areas and provide a glimpse into future BT dynamics in mixed use, (sub)urbanizing areas.


Water Research | 2017

The transport of polycyclic aromatic hydrocarbons during rainfall and snowmelt in contrasting landscapes

Abha Parajulee; Ying Duan Lei; Ajitha Kananathalingam; David S. McLagan; Carl P. J. Mitchell; Frank Wania

Though it has been established that stream concentrations of polycyclic aromatic hydrocarbons (PAHs) in urban watersheds can be much greater than those in less developed watersheds, knowledge of transport mechanisms is lacking, particularly in temperate, Northern climates with seasonal snow packs. We combine high-resolution stream water sampling with air, suspended solid and stream flow monitoring to investigate the source to stream transport of PAHs during rainfall and snowmelt in paired watersheds with contrasting land use. Despite similar particle loads, contamination of particles that is 8-48 times higher in the urban watersheds leads to area-normalized loads of PAHs that are 6-82 times greater than in the agricultural watersheds. In the urban watershed, average volumetric storm flow concentrations increase with longer antecedent dry period that allows build-up of PAHs on watershed surfaces. Cluster analysis suggests road dust is a minor source of suspended solid-bound PAHs in more agricultural watersheds during rainfall. During snowmelt, earlier peaks in concentration in the urban watershed are likely due to melt from snow packs and snow banks travelling quickly to the stream network via impervious surfaces and sewer drains. While road-derived inputs also appear to be important during snowmelt in the agricultural watershed, relatively delayed peak concentrations result from delayed inputs from snow packs in more pervious areas of the watershed.


Environmental Science & Technology | 2018

Investigating the Sources and Transport of Benzotriazole UV Stabilizers during Rainfall and Snowmelt across an Urbanization Gradient

Abha Parajulee; Ying Duan Lei; Ajitha Kananathalingam; Carl P. J. Mitchell; Frank Wania

Benzotriazole UV stabilizers (BT-UVs) have attracted increasing attention due to their bioaccumulative nature and ubiquitous presence in surface waters. We apply high-frequency sampling in paired watersheds to describe, for the first time, the behavior of BT-UVs in stream channels during snowmelt and rainfall. Relative to a largely agricultural watershed, concentrations of BT-UVs in an urban watershed were 4-90 times greater during rainfall and 3-21 times greater during snowmelt. During rainfall, a decrease in BT-UV concentrations on particles with increasing suspended sediments and streamflow occurred at all urban sites due to input of relatively clean sediments, while both decreases and increases were observed at rural sites. Where increases occurred in the rural watershed, road sediments were consistently suggested as the source. Contrasts between the urban and rural sites were also observed during snowmelt. While BT-UV concentrations on particles peaked with peak suspended sediment levels at urban stream sites, the opposite was true at rural stream sites. This appeared to be driven partially by different snowpack melt rates in the two watersheds, with earlier melt and presumably higher streamflow facilitating suspension or erosion of more contaminated sediment in the urban stream. In general, it appears that relatively high, consistent emissions in the form of informal (plastic) debris disposal by consumers or industrial releases have likely led to more homogeneous BT-UV profiles and temporal behavior in the urban watershed. In the rural watershed, low emissions instead entail that emissions variability is more likely to translate to variability in chemical profiles and temporal behavior.


Environmental Science & Technology | 2003

Development and Calibration of a Resin-Based Passive Sampling System for Monitoring Persistent Organic Pollutants in the Atmosphere

Frank Wania; Li Shen; Ying Duan Lei; Camilla Teixeira; Derek C. G. Muir

Collaboration


Dive into the Ying Duan Lei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Wang

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge