Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying H. Shen is active.

Publication


Featured researches published by Ying H. Shen.


Diabetes | 2006

Free Fatty Acids Inhibit Insulin Signaling–Stimulated Endothelial Nitric Oxide Synthase Activation Through Upregulating PTEN or Inhibiting Akt Kinase

Xing Li Wang; Lin Zhang; Keith A. Youker; Ming-Xiang Zhang; Jian Wang; Scott A. LeMaire; Joseph S. Coselli; Ying H. Shen

In metabolic syndrome, a systemic deregulation of the insulin pathway leads to a combined deregulation of insulin-regulated metabolism and cardiovascular functions. Free fatty acids (FFAs), which are increased in metabolic syndrome, inhibit insulin signaling and induce metabolic insulin resistance. This study was designed to examine FFAs’ effects on vascular insulin signaling and endothelial nitric oxide (NO) synthase (eNOS) activation in endothelial cells. We showed that FFAs inhibited insulin signaling and eNOS activation through different mechanisms. While linoleic acid inhibited Akt-mediated eNOS phosphorylation, palmitic acid appeared to affect the upstream signaling. Upregulation of PTEN (phosphatase and tensin homolog deleted on chromosome 10) activity and transcription by palmitic acid mediated the inhibitory effects on insulin signaling. We further found that activated stress signaling p38, but not Jun NH2-terminal kinase, was involved in PTEN upregulation. The p38 target transcriptional factor activating transcription factor (ATF)-2 bound to the PTEN promoter, which was increased by palmitic acid treatment. In summary, both palmitic acid and linoleic acid exert inhibitory effect on insulin signaling and eNOS activation in endothelial cells. Palmitic acid inhibits insulin signaling by promoting PTEN activity and its transcription through p38 and its downstream transcription factor ATF-2. Our findings suggest that FFA-mediated inhibition of vascular insulin signaling and eNOS activation may contribute to cardiovascular diseases in metabolic syndrome.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Cadmium Is a Novel and Independent Risk Factor for Early Atherosclerosis Mechanisms and In Vivo Relevance

Barbara Messner; Michael Knoflach; Andreas Seubert; Andreas Ritsch; Kristian Pfaller; Blair Henderson; Ying H. Shen; Iris Zeller; Johann Willeit; Günther Laufer; Georg Wick; Stefan Kiechl; David Bernhard

Objectives—Although cadmium (Cd) is an important and common environmental pollutant and has been linked to cardiovascular diseases, little is known about its effects in initial stages of atherosclerosis. Methods and Results—In the 195 young healthy women of the Atherosclerosis Risk Factors in Female Youngsters (ARFY) study, cadmium (Cd) level was independently associated with early atherosclerotic vessel wall thickening (intima-media thickness exceeding the 90th percentile of the distribution; multivariable OR 1.6[1.1.–2.3], P=0.016). In line, Cd-fed ApoE knockout mice yielded a significantly increased aortic plaque surface compared to controls (9.5 versus 26.0 mm2, P<0.004). In vitro results indicate that physiological doses of Cd increase vascular endothelial permeability up to 6-fold by (1) inhibition of endothelial cell proliferation, and (2) induction of a caspase-independent but Bcl-xL-inhibitable form of cell death more than 72 hours after Cd addition. Both phenomena are preceded by Cd-induced DNA strand breaks and a cellular DNA damage response. Zinc showed a potent protective effect against deleterious effects of Cd both in the in vitro and human studies. Conclusion—Our research suggests Cd has promoting effects on early human and murine atherosclerosis, which were partly offset by high Zn concentrations.


Diabetes | 2009

Activation of the AMPK-FOXO3 Pathway Reduces Fatty Acid–Induced Increase in Intracellular Reactive Oxygen Species by Upregulating Thioredoxin

Xiao-Nan Li; Jun Song; Lin Zhang; Scott A. LeMaire; Xiaoyang Hou; Cheng Zhang; Joseph S. Coselli; Li Chen; Xing Li Wang; Yun Zhang; Ying H. Shen

OBJECTIVE Oxidative stress induced by free fatty acids contributes to the development of cardiovascular diseases in patients with metabolic syndrome. Reducing oxidative stress may attenuate these pathogenic processes. Activation of AMP-activated protein kinase (AMPK) has been reported to reduce intracellular reactive oxygen species (ROS) levels. The thioredoxin (Trx) system is a major antioxidant system. In this study, we investigated the mechanisms involved in the AMPK-mediated regulation of Trx expression and the reduction of intracellular ROS levels. RESEARCH DESIGN AND METHODS We observed that activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) significantly reduced ROS levels induced by palmitic acid in human aortic endothelial cells. Activation of AMPK increased expression of the antioxidant Trx, which mediated the ROS reduction. RT-PCR showed that AMPK regulated Trx at the transcriptional level. RESULTS Forkhead transcription factor 3 (FOXO3) was identified as the target transcription factor involved in the upregulation of Trx expression. FOXO3 bound to the Trx promoter, recruited the histone acetylase p300 to the Trx promoter, and formed a transcription activator complex, which was enhanced by AICAR treatment. AMPK activated FOXO3 by promoting its nuclear translocation. We further showed that AICAR injection increased the expression of Trx and decreased ROS production in the aortic wall of ApoE−/− mice fed a high-fat diet. CONCLUSIONS These results suggest that activation of the AMPK-FOXO3 pathway reduces ROS levels by inducing Trx expression. Thus, the AMPK-FOXO3-Trx axis may be an important defense mechanism against excessive ROS production induced by metabolic stress and could be a therapeutic target in treating cardiovascular diseases in metabolic syndrome.


Journal of Biological Chemistry | 2006

Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells.

Ying H. Shen; Lin Zhang; Yehua Gan; Xinwen Wang; Jian Wang; Scott A. LeMaire; Joseph S. Coselli; Xing Li Wang

The key feature of metabolic syndrome, a cluster of metabolic and cardiovascular disorders, is systemic insulin resistance, which is associated with dysregulated endothelial nitric-oxide synthase (eNOS). Stress signaling induced by inflammation can inhibit insulin signaling. However, molecular mechanisms for the cross-talk between stress signaling and insulin resistance are only partially understood. Resistin, an adipokine/cytokine, is involved in inflammatory processes that could lead to insulin resistance status and vascular diseases. In the current study, we observed that resistin inhibited insulin signaling and eNOS activation in endothelial cells. Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) expression by resistin may mediate the inhibitory effects. Activated stress signaling p38 MAPK, but not JNK, is involved in PTEN up-regulation. We further found that p38 target transcriptional factor activating transcription factor-2 (ATF-2) bound to ATF sites in the PTEN promoter. The phosphorylation/activation of ATF-2 and its binding to PTEN promoter were increased by resistin treatment. In summary, up-regulation of PTEN is involved in the inhibitory effects of resistin on insulin signaling and eNOS activation in endothelial cells. Resistin induces PTEN expression by activating stress signaling p38 pathway, which may activate target transcription factor ATF-2, which in turn induces PTEN expression. Our findings suggest that resistin-mediated inhibition of insulin signaling and eNOS activation may contribute to cardiovascular diseases.


Biochemical and Biophysical Research Communications | 2010

Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway

Xinguo Hou; Jun Song; Xiaonan Li; Lin Zhang; XingLi Wang; Li Chen; Ying H. Shen

BACKGROUND Oxidative stress induced by free fatty acids plays a critical role in the pathogenesis of endothelial dysfunction and atherosclerosis in patients with metabolic syndrome. Reducing oxidative stress in these patients may prevent cardiovascular complications. The antidiabetic agent metformin has been reported to directly protect the cardiovascular system. In this study, we examined the effect of metformin on the intracellular levels of reactive oxygen species (ROS) induced by palmitic acid (PA) in human aortic endothelial cells and studied the molecular mechanisms involved. METHODS AND RESULTS We observed that metformin significantly reduced intracellular ROS levels induced by PA. Additionally, metformin increased the expression of the antioxidant thioredoxin (Trx), which mediated metformins effects on ROS reduction. Metformin increased Trx expression through the AMP-activated protein kinase (AMPK) pathway. Metformin-regulated Trx at the transcriptional level and forkhead transcription factor 3 (FOXO3) was involved in this process. CONCLUSION These results suggest that metformin reduces ROS levels by inducing Trx expression through activation of the AMPK-FOXO3 pathway.


Biochemical and Biophysical Research Communications | 2009

Up-regulation of Thioredoxin Interacting Protein (Txnip) by p38 MAPK and FOXO1 Contributes to the Impaired Thioredoxin Activity and Increased ROS in Glucose- treated Endothelial Cells

Xiao-Nan Li; Yuanyuan Rong; Mei Zhang; Xing Li Wang; Scott A. LeMaire; Joseph S. Coselli; Yun Zhang; Ying H. Shen

Oxidative stress induced by hyperglycemia is a key factor in the development of cardiovascular diseases in diabetes. Thioredoxin (Trx) system, a major thiol antioxidant system, regulates the reduction of intracellular reactive oxygen species (ROS). In this study, we demonstrated that high glucose significantly increased intracellular ROS levels in human aortic endothelial cells (HAECs). Additionally, high glucose reduced the antioxidant activity of thioredoxin. To investigate the mechanisms involved, we found that glucose enhanced the expression of thioredoxin interacting protein (Txnip), a Trx inhibitory protein, through p38 mitogen-activated protein kinase (MAPK). We also showed that glucose regulated Txnip at transcription level and p38 MAPK and forkhead box O1 transcriptional factor (FOXO1) were involved in the process. Taken together, upregulation of Txnip and subsequent impairment of thioredoxin antioxidative system through p38 MAPK and FOXO1 may represent a novel mechanism for glucose-induced increase in intracellular ROS.


Journal of Biological Chemistry | 2005

Role of Histone Deacetylation in Cell-specific Expression of Endothelial Nitric-oxide Synthase

Yehua Gan; Ying H. Shen; Jian Wang; Xinwen Wang; Budi Utama; Jing Wang; Xing Li Wang

Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in cell-specific expression of endothelial nitric-oxide synthase (eNOS) are not fully understood. In this study we investigated whether histone deacetylation was involved in repression of eNOS expression in non-endothelial cells. Induction of eNOS expression by histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sodium butyrate was observed in all four different types of non-endothelial cells examined. Chromatin immunoprecipitation assays showed that the induction of eNOS expression by TSA was accompanied by a remarkable increase of acetylation of histone H3 associated with the eNOS 5′-flanking region in the non-endothelial cells. Moreover, DNA methylation-mediated repression of eNOS promoter activity was partially reversed by TSA treatment, and combined treatment of TSA and 5-aza-2′-deoxycytidine (AzadC) synergistically induced eNOS expression in non-endothelial cells. The proximal Sp1 site is critical for basal activity of eNOS promoter. The induction of eNOS by inhibition of HDACs in non-endothelial cells, however, appeared not mediated by the changes in Sp1 DNA binding activity. We further showed that Sp1 bound to the endogenous eNOS promoter and associated with HDAC1 in non-endothelial HeLa cells. Combined TSA and AzadC treatment increased Sp1 binding to the endogenous eNOS promoter but decreased the association between HDAC1 and Sp1 in HeLa cells. Our data suggest that HDAC1 plays a critical role in eNOS repression, and the proximal Sp1 site may serve a key target for HDCA1-mediated eNOS repression in non-endothelial cells.


Circulation | 2006

Increased Collagen Deposition and Elevated Expression of Connective Tissue Growth Factor in Human Thoracic Aortic Dissection

Xinwen Wang; Scott A. LeMaire; Li Chen; Ying H. Shen; Yehua Gan; Heather Bartsch; Stacey A. Carter; Budi Utama; Hesheng Ou; Joseph S. Coselli; Xing Li Wang

Background— Thoracic aortic dissection (TAD) is characterized by dysregulated extracellular matrix. Little is known about the alterations of collagen and stimulators of collagen synthesis, eg, connective tissue growth factor (CTGF), in patients with TAD. In this study, we examined their roles in TAD. Methods and Results— Surgical specimens of the aortic wall of TAD patients (n=10) and controls (n=10) were tested for collagen types I and III and CTGF expression. When compared with controls, protein levels of type I and III collagen and CTGF were significantly increased by 3.2-, 3.7-, and 5.3-fold, respectively (P<0.05 for all). Similar patterns were shown in mRNA levels of type I&agr; and I&agr;2 collagen and CTGF. Using immunohistochemistry and trichrome staining, we also observed elevated levels of collagen in the aortic media and adventitia. Treatment with recombinant human CTGF increased collagen synthesis in cultured aortic smooth muscle cells in a dose- and time-dependent fashion, in which expression of collagens increased from 506±108 counts per minute to 2764±240 cpm by 50 ng/mL CTGF, and from 30±43 cpm to 429±102 cpm at 48 hours. Conclusions— TAD patients exhibited significantly increased expression of aortic collagen types I and III as well as CTGF, which is likely to be responsible for the compromised aortic distensibility and systemic compliance. Because CTGF can increase collagen expression, CTGF may be a new target molecule in the pathogenesis and progression of TAD.


Journal of Surgical Research | 2013

Molecular mechanisms of thoracic aortic dissection

Darrell Wu; Ying H. Shen; Ludivine Russell; Joseph S. Coselli; Scott A. LeMaire

Thoracic aortic dissection (TAD) is a highly lethal vascular disease. In many patients with TAD, the aorta progressively dilates and ultimately ruptures. Dissection formation, progression, and rupture cannot be reliably prevented pharmacologically because the molecular mechanisms of aortic wall degeneration are poorly understood. The key histopathologic feature of TAD is medial degeneration, a process characterized by smooth muscle cell depletion and extracellular matrix degradation. These structural changes have a profound impact on the functional properties of the aortic wall and can result from excessive protease-mediated destruction of the extracellular matrix, altered signaling pathways, and altered gene expression. Review of the literature reveals differences in the processes that lead to ascending versus descending and sporadic versus hereditary TAD. These differences add to the complexity of this disease. Although tremendous progress has been made in diagnosing and treating TAD, a better understanding of the molecular, cellular, and genetic mechanisms that cause this disease is necessary to developing more effective preventative and therapeutic treatment strategies.


Biochemical and Biophysical Research Communications | 2010

PPARα agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity

Xiaoyang Hou; Ying H. Shen; Chuanbao Li; Fei Wang; Cheng Zhang; Peili Bu; Yun Zhang

Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors alpha (PPARalpha) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs. Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.

Collaboration


Dive into the Ying H. Shen's collaboration.

Top Co-Authors

Avatar

Joseph S. Coselli

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Scott A. LeMaire

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xing Li Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lin Zhang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xinwen Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Darrell Wu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Pingping Ren

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Budi Utama

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Cheng Zhang

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge