Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying-Hsin Hsieh is active.

Publication


Featured researches published by Ying-Hsin Hsieh.


Journal of Biological Chemistry | 2011

SecA Alone Can Promote Protein Translocation and Ion Channel Activity SecYEG INCREASES EFFICIENCY AND SIGNAL PEPTIDE SPECIFICITY

Ying-Hsin Hsieh; Hao Zhang; Bor-ruei Lin; Ningren Cui; Bing Na; Hsiuchin Yang; Chun Jiang; Sen-Fang Sui; Phang C. Tai

Background: SecA has been viewed as ATPase helping precursors across SecYEG channels. Results: SecA alone could promote protein translocation and ion channel activity, but loses specificity and efficiency, which can be restored by SecYEG. Conclusion: SecA plays important structural roles and can function as low affinity protein conducting channels in membranes. Significance: Establishing SecA as channels is crucial for understanding diverse mechanisms and evolution of bacterial translocation pathways. SecA is an essential component of the Sec-dependent protein translocation pathway across cytoplasmic membranes in bacteria. Escherichia coli SecA binds to cytoplasmic membranes at SecYEG high affinity sites and at phospholipid low affinity sites. It has been widely viewed that SecYEG functions as the essential protein-conducting channel through which precursors cross the membranes in bacterial Sec-dependent pathways, and that SecA functions as a motor to hydrolyze ATP in translocating precursors through SecYEG channels. We have now found that SecA alone can promote precursor translocation into phospholiposomes. Moreover, SecA-liposomes elicit ionic currents in Xenopus oocytes. Patch-clamp recordings further show that SecA alone promotes signal peptide- or precursor-dependent single channel activity. These activities were observed with the functional SecA at about 1–2 μm. The results show that SecA alone is sufficient to promote protein translocation into liposomes and to elicit ionic channel activity at the phospholipids low affinity binding sites, thus indicating that SecA is able to form the protein-conducting channels. Even so, such SecA-liposomes are less efficient than those with a full complement of Sec proteins, and lose the signal-peptide proofreading function, resembling the effects of PrlA mutations. Addition of purified SecYEG restores the signal peptide specificity and increases protein translocation and ion channel activities. These data show that SecA can promote protein translocation and ion channel activities both when it is bound to lipids at low affinity sites and when it is bound to SecYEG with high affinity. The latter of the two interactions confers high efficiency and specificity.


Biochemical and Biophysical Research Communications | 2013

Reconstitution of functionally efficient SecA-dependent protein-conducting channels: transformation of low-affinity SecA-liposome channels to high-affinity SecA-SecYEG-SecDF·YajC channels.

Ying-Hsin Hsieh; Hao Zhang; Hongyun Wang; Hsiuchin Yang; Chun Jiang; Sen-Fang Sui; Phang C. Tai

Previous work showed that SecA alone can promote protein translocation and ion-channel activity in liposomes, and that SecYEG increases efficiency as well as signal peptide specificity. We now report that SecDF·YajC further increases translocation and ion-channel activity. These activities of reconstituted SecA-SecYEG-SecDF·YajC-liposome are almost the same as those of native membranes, indicating the transformation of reconstituted functional high-affinity protein-conducting channels from the low-affinity SecA-channels.


The Journal of Membrane Biology | 2012

Escherichia coli Membranes Depleted of SecYEG Elicit SecA-Dependent Ion-Channel Activity but Lose Signal Peptide Specificity

Bor-ruei Lin; Ying-Hsin Hsieh; Chun Jiang; Phang C. Tai

We have developed a sensitive method to detect the opening of SecA-dependent, protein-conducting channels in Xenopus oocytes. In this study, we determined the ionic current activities of the SecA-dependent channel from membrane vesicles depleted of SecYEG. We found that these SecYEG-depleted membranes produced SecA-dependent ionic currents in the oocytes, as did membranes containing SecYEG. However, reconstituted membranes depleted of SecYEG required higher concentrations of SecA to elicit ionic currents like those in membranes containing SecYEG. In contrast to membranes containing SecYEG, the proofreading capacity of signal peptides was lost for those membranes lacking SecYEG. These findings are consistent with loss of signal peptide specificity in channel activity from membranes of SecY suppressor or SecY plug domain mutants. The signal peptide specificity of the reconstituted membranes, like SecA-liposomes, can be restored by the addition of SecYEG proteoliposomes. On the other hand, the channel activity efficiency of reconstituted membranes was fully restored, while SecA-liposomes could only be partially enhanced by the addition of SecYEG, indicating that, in addition to SecYEG, other membrane proteins contribute to the efficiency of channel activity. The SecA-dependent channels in membranes that lacked SecYEG also lost ion selectivity to monovalent cations but retained selective permeability to large anions. Thus, the electrophysiological evidence presented here indicates that SecYEG is not obligatory for the channel activity of Escherichia coli membranes, as previously shown for protein translocation, and that SecYEG is important for maintenance of the efficiency and specificity of SecA-dependent channels.


ChemMedChem | 2013

Design, synthesis and biological evaluation of rose bengal analogues as SecA inhibitors.

Jianmei Cui; Jinshan Jin; Ying-Hsin Hsieh; Hsiuchin Yang; Bowen Ke; Krishna Damera; Phang C. Tai; Binghe Wang

SecA, a key component of bacterial Sec‐dependent secretion pathway, is an attractive target for exploring novel antimicrobials. Rose bengal (RB), a polyhalogenated fluorescein derivative, was found from our previous study as a potent SecA inhibitor. Here we describe the synthesis and structure–activity relationships (SAR) of 23 RB analogues that were designed by systematical dissection of RB. Evaluation of these analogues allowed us to establish an initial SAR in SecA inhibition. The antimicrobial effects of these SecA inhibitors are confirmed in experiments using E. coli and B. subtilis.


Biochemical and Biophysical Research Communications | 2014

The dispensability and requirement of SecA N-terminal aminoacyl residues for complementation, membrane binding, lipid-specific domains and channel activities.

Jeanetta Holley Floyd; Zhipeng You; Ying-Hsin Hsieh; Yamin Ma; Hsuichin Yang; Phang C. Tai

SecA is an essential multifunctional protein for the translocation of proteins across bacterial membranes. Though SecA is known to function in the membrane, the detailed mechanism for this process remains unclear. In this study we constructed a series of SecA N-terminal deletions and identified two specific domains crucial for initial SecA/membrane interactions. The first small helix, the linker and part of the second helix (Δ2-22) were found to be dispensable for SecA activity in complementing the growth of a SecA ts mutant. However, deletions of N-terminal aminoacyl residues 23-25 resulted in severe progressive retardation of growth. Moreover, a decrease of SecA activity caused by N-terminal deletions correlated to the loss of SecA membrane binding, formation of lipid-specific domains and channel activity. All together, the results indicate that the N-terminal aminoacyl residues 23-25 play a critical role for SecA binding to membranes and that the N-terminal limit of SecA for activity is at the 25th amino acid.


ChemMedChem | 2016

Design, Synthesis and Evaluation of Triazole-Pyrimidine Analogues as SecA Inhibitors

Jianmei Cui; Jinshan Jin; Arpana S. Chaudhary; Ying-Hsin Hsieh; Hao Zhang; Chaofeng Dai; Krishna Damera; Weixuan Chen; Phang C. Tai; Binghe Wang

SecA, a key component of the bacterial Sec‐dependent secretion pathway, is an attractive target for the development of new antimicrobial agents. Through a combination of virtual screening and experimental exploration of the surrounding chemical space, we identified a hit bistriazole SecA inhibitor, SCA‐21, and studied a series of analogues by systematic dissections of the core scaffold. Evaluation of these analogues allowed us to establish an initial structure–activity relationship in SecA inhibition. The best compounds in this group are potent inhibitors of SecA‐dependent protein‐conducting channel activity and protein translocation activity at low‐ to sub‐micromolar concentrations. They also have minimal inhibitory concentration (MIC) values against various strains of bacteria that correlate well with the SecA and protein translocation inhibition data. These compounds are effective against methicillin‐resistant Staphylococcus aureus strains with various levels of efflux pump activity, indicating the capacity of SecA inhibitors to null the effect of multidrug resistance. Results from studies of drug‐affinity‐responsive target stability and protein pull‐down assays are consistent with SecA as a target for these compounds.


ChemMedChem | 2016

Using Chemical Probes to Assess the Feasibility of Targeting SecA for Developing Antimicrobial Agents against Gram‐Negative Bacteria

Jinshan Jin; Ying-Hsin Hsieh; Jianmei Cui; Krishna Damera; Chaofeng Dai; Arpana S. Chaudhary; Hao Zhang; Hsiuchin Yang; Nannan Cao; Chun Jiang; Martti Vaara; Binghe Wang; Phang C. Tai

With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram‐negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad‐spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram‐positive bacteria. However, we have not achieved the same level of success against Gram‐negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors. In this study, we use representative inhibitors as chemical probes to gain an understanding as to why these inhibitors were not effective against Gram‐negative bacteria. The results validate our initial postulation that the major difference in effectiveness against Gram‐positive and Gram‐negative bacteria is in the additional permeability barrier posed by the outer membrane of Gram‐negative bacteria. We also found that the expression of efflux pumps, which are responsible for multidrug resistance (MDR), have no effect on the effectiveness of these SecA inhibitors. Identification of an inhibitor‐resistant mutant and complementation tests of the plasmids containing secA in a secAts mutant showed that a single secA‐azi‐9 mutation increased the resistance, providing genetic evidence that SecA is indeed the target of these inhibitors in bacteria. Such results strongly suggest SecA as an excellent target for developing effective antimicrobials against Gram‐negative bacteria with the intrinsic ability to overcome MDR. A key future research direction should be the optimization of membrane permeability.


Biochemical and Biophysical Research Communications | 2014

Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities

Ying-Hsin Hsieh; Ying-Ju Huang; Jinshan Jin; Liyan Yu; Hsiuchin Yang; Chun Jiang; Binghe Wang; Phang C. Tai

SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes.


Biochemical and Biophysical Research Communications | 2013

Specificity of SecYEG for PhoA precursors and SecA homologs on SecA protein-conducting channels.

Hao Zhang; Ying-Hsin Hsieh; Bor-ruei Lin; Liyan Yu; Hsiuchin Yang; Chun Jiang; Sen-Fang Sui; Phang C. Tai

Previous studies showed that Escherichia coli membranes depleted of SecYEG are capable of translocating certain precursor proteins, but not other precursors such as pPhoA, indicating a differential requirement for SecYEG. In this study, we examined the role of SecYEG in pPhoA translocation using a purified reconstituted SecA-liposomes system. We found that translocation of pPhoA, in contrast to that of pOmpA, requires the presence of purified SecYEG. A differential specificity of the SecYEG was also revealed in its interaction with SecA: EcSecYEG did not enhance SecA-mediated pOmpA translocation by purified SecA either from Pseudomonas aeruginosa or Bacillus subtilis. Neither was SecYEG required for eliciting ion channel activity, which could be opened by unfolded pPhoA or unfolded PhoA. Addition of the SecYEG complex did restore the specificity of signal peptide recognition in the ion-channel activity. We concluded that SecYEG confers specificity in interacting with protein precursors and SecAs.


Analytical Biochemistry | 2015

Monitoring channel activities of proteoliposomes with SecA and Cx26 gap junction in single oocytes.

Ying-Hsin Hsieh; Juan Zou; Jinshan Jin; Hsiuchin Yang; Yanyi Chen; Chun Jiang; Jenny J. Yang; Phang C. Tai

Establishing recordable channels in membranes of oocytes formed by expressing exogenous complementary DNA (cDNA) or messenger RNA (mRNA) has contributed greatly to understanding the molecular mechanisms of channel functions. Here, we report the extension of this semi-physiological system for monitoring the channel activity of preassembled membrane proteins in single cell oocytes by injecting reconstituted proteoliposomes along with substrates or regulatory molecules. We build on the observation that SecA from various bacteria forms active protein-conducting channels with injection of proteoliposomes, protein precursors, and ATP-Mg(2+). Such activity was enhanced by reconstituted SecYEG-SecDF•YajC liposome complexes that could be monitored easily and efficiently, providing correlation of in vitro and intact cell functionality. In addition, inserting reconstituted gap junction Cx26 liposomes into the oocytes allowed the demonstration of intracellular/extracellular Ca(2+)-regulated hemi-channel activities. The channel activities can be detected rapidly after injection, can be monitored for various effectors, and are dependent on specific exogenous lipid compositions. This simple and effective functional system with low endogenous channel activity should have broad applications for monitoring the specific channel activities of complex interactions of purified membrane proteins with their effectors and regulatory molecules.

Collaboration


Dive into the Ying-Hsin Hsieh's collaboration.

Top Co-Authors

Avatar

Phang C. Tai

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Chun Jiang

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Hsiuchin Yang

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Binghe Wang

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Jinshan Jin

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Hao Zhang

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Jianmei Cui

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krishna Damera

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge