Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying Liao is active.

Publication


Featured researches published by Ying Liao.


Virology | 2006

Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein

Ying Liao; Q. Yuan; Jaume Torres; James P. Tam; D.X. Liu

Abstract A diverse group of cytolytic animal viruses encodes small, hydrophobic proteins to modify host cell membrane permeability to ions and small molecules during their infection cycles. In this study, we show that expression of the SARS-CoV E protein in mammalian cells alters the membrane permeability of these cells. Immunofluorescent staining and cell fractionation studies demonstrate that this protein is an integral membrane protein. It is mainly localized to the ER and the Golgi apparatus. The protein can be translocated to the cell surface and is partially associated with lipid rafts. Further biochemical characterization of the protein reveals that it is posttranslationally modified by palmitoylation on all three cysteine residues. Systematic mutagenesis studies confirm that the membrane permeabilizing activity of the SARS-CoV E protein is associated with its transmembrane domain.


Biochemical and Biophysical Research Communications | 2004

Expression of SARS-coronavirus envelope protein in Escherichia coli cells alters membrane permeability

Ying Liao; Julien Lescar; James P. Tam; D.X. Liu

Abstract To promote viral entry, replication, release, and spread to neighboring cells, many cytolytic animal viruses encode proteins responsible for modification of host cell membrane permeability and for formation of ion channels in host cell membranes during their life cycles. In this study, we show that the envelope (E) protein of severe acute respiratory syndrome-associated coronavirus can induce membrane permeability changes when expressed in Escherichia coli. E protein expressed in bacterial and mammalian cells under reducing conditions existed as monomers, but formed homodimer and homotrimer under non-reducing conditions. Site-directed mutagenesis studies revealed that two cysteine residues of the E protein were essential for oligomerization, leading to induction of membrane permeability. This is the first report demonstrating that a coronavirus-encoded protein could modify membrane permeability in E. coli cells.


Journal of Virology | 2009

Inhibition of Protein Kinase R Activation and Upregulation of GADD34 Expression Play a Synergistic Role in Facilitating Coronavirus Replication by Maintaining De Novo Protein Synthesis in Virus-Infected Cells

Xiaoxing Wang; Ying Liao; Pei Ling Yap; Kim J. Png; James P. Tam; Ding Xiang Liu

ABSTRACT A diversity of strategies is evolved by RNA viruses to manipulate the host translation machinery in order to create an optimal environment for viral replication and progeny production. One of the common viral targets is the α subunit of eukaryotic initiation factor 2 (eIF-2α). In this report, we show that phosphorylation of eIF-2α was severely suppressed in human and animal cells infected with the coronavirus infectious bronchitis virus (IBV). To understand whether this suppression is through inhibition of protein kinase R (PKR), the double-stranded-RNA-dependent kinase that is one of the main kinases responsible for phosphorylation of eIF-2α, cells infected with IBV were analyzed by Western blotting. The results showed that the level of phosphorylated PKR was greatly reduced in IBV-infected cells. Overexpression of IBV structural and nonstructural proteins (nsp) demonstrated that nsp2 is a weak PKR antagonist. Furthermore, GADD34, a component of the protein phosphatase 1 (PP1) complex, which dephosphorylates eIF-2α, was significantly induced in IBV-infected cells. Inhibition of the PP1 activity by okadaic acid and overexpression of GADD34, eIF-2α, and PKR, as well as their mutant constructs in virus-infected cells, showed that these viral regulatory strategies played a synergistic role in facilitating coronavirus replication. Taken together, these results confirm that IBV has developed a combination of two mechanisms, i.e., blocking PKR activation and inducing GADD34 expression, to maintain de novo protein synthesis in IBV-infected cells and, meanwhile, to enhance viral replication.


Journal of Virology | 2013

Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway

Ying Liao; To Sing Fung; Mei Huang; Shou Guo Fang; Yanxin Zhong; Ding Xiang Liu

ABSTRACT Induction of the unfolded protein response (UPR) is an adaptive cellular response to endoplasmic reticulum (ER) stress that allows a cell to reestablish ER homeostasis. However, under severe and persistent ER stress, prolonged UPR may activate unique pathways that lead to cell death. In this study, we investigated the activation of the protein kinase R-like ER kinase (PERK) pathway of UPR in cells infected with the coronavirus infectious bronchitis virus (IBV) and its relationship with IBV-induced apoptosis. The results showed moderate induction of PERK phosphorylation in IBV-infected cells. Meanwhile, activating transcription factor 4 (ATF4) was upregulated at the protein level in the infected cells, resulting in the induction in trans of the transcription factor ATF3 and the proapoptotic growth arrest and DNA damage-inducible protein GADD153. Knockdown of PERK by small interfering RNA (siRNA) suppressed the activation of GADD153 and the IBV-induced apoptosis. Interestingly, knockdown of protein kinase R (PKR) by siRNA and inhibition of the PKR kinase activity by 2-aminopurine (2-AP) also reduced the IBV-induced upregulation of GADD153 and apoptosis induction. In GADD153-knockdown cells, IBV-induced apoptosis was suppressed and virus replication inhibited, revealing a key role of GADD153 in IBV-induced cell death and virus replication. Analysis of the pathways downstream of GADD153 revealed much more activation of the extracellular signal-related kinase (ERK) pathway in GADD153-knockdown cells during IBV infection, indicating that GADD153 may modulate apoptosis through suppression of the pathway. This study provides solid evidence that induction of GADD153 by PERK and PKR plays an important regulatory role in the apoptotic process triggered by IBV infection.


FEBS Letters | 2006

Biochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome coronavirus envelope protein expressed in mammalian cells

Q. Yuan; Ying Liao; Jaume Torres; James P. Tam; D.X. Liu

Coronavirus envelope (E) protein is a small integral membrane protein with multi‐functions in virion assembly, morphogenesis and virus–host interaction. Different coronavirus E proteins share striking similarities in biochemical properties and biological functions, but seem to adopt distinct membrane topology. In this report, we study the membrane topology of the SARS‐CoV E protein by immunofluorescent staining of cells differentially permeabilized with detergents and proteinase K protection assay. It was revealed that both the N‐ and C‐termini of the SARS‐CoV E protein are exposed to the cytoplasmic side of the membranes (NcytoCcyto). In contrast, parallel experiments showed that the E protein from infectious bronchitis virus (IBV) spanned the membranes once, with the N‐terminus exposed luminally and the C‐terminus exposed cytoplasmically (Nexo(lum)Ccyto). Intriguingly, a minor proportion of the SARS‐CoV E protein was found to be modified by N‐linked glycosylation on Asn 66 and inserted into the membranes once with the C‐terminus exposed to the luminal side. The presence of two distinct membrane topologies of the SARS‐CoV E protein may provide a useful clue to the pathogenesis of SARS‐CoV.


Journal of Virology | 2014

The Endoplasmic Reticulum Stress Sensor IRE1α Protects Cells from Apoptosis Induced by the Coronavirus Infectious Bronchitis Virus

To Sing Fung; Ying Liao; Ding Xiang Liu

ABSTRACT The unfolded-protein response (UPR) is a signal transduction cascade triggered by perturbation of the homeostasis of the endoplasmic reticulum (ER). UPR resolves ER stress by activating a cascade of cellular responses, including the induction of molecular chaperones, translational attenuation, ER-associated degradation, and other mechanisms. Under prolonged and irremediable ER stress, however, the UPR can also trigger apoptosis. Here, we report that in cells infected with the avian coronavirus infectious bronchitis virus (IBV), ER stress was induced and the IRE1α-XBP1 pathway of UPR was activated. Knockdown and overexpression experiments demonstrated that IRE1α protects infected cells from IBV-induced apoptosis, which required both its kinase and RNase activities. Our data also suggest that splicing of XBP1 mRNA by IRE1α appears to convert XBP1 from a proapoptotic XBP1u protein to a prosurvival XBP1s protein. Moreover, IRE1α antagonized IBV-induced apoptosis by modulating the phosphorylation status of the proapoptotic c-Jun N-terminal kinase (JNK) and the prosurvival RAC–alpha serine/threonine-protein kinase (Akt). Taken together, the data indicate that the ER stress sensor IRE1α is activated in IBV-infected cells and serves as a survival factor during coronavirus infection. IMPORTANCE Animal coronaviruses are important veterinary viruses, which could cross the species barrier, becoming severe human pathogens. Molecular characterization of the interactions between coronaviruses and host cells is pivotal to understanding the pathogenicity and species specificity of coronavirus infection. It has been well established that the endoplasmic reticulum (ER) is closely associated with coronavirus replication. Here, we report that inositol-requiring protein 1 alpha (IRE1α), a key sensor of ER stress, is activated in cells infected with the avian coronavirus infectious bronchitis virus (IBV). Moreover, IRE1α is shown to protect the infected cells from apoptosis by modulating the unfolded-protein response (UPR) and two kinases related to cell survival. This study demonstrates that UPR activation constitutes a major aspect of coronavirus-host interactions. Manipulations of the coronavirus-induced UPR may provide novel therapeutic targets for the control of coronavirus infection and pathogenesis.


Cellular and Molecular Life Sciences | 2007

Coronavirus envelope protein: A small membrane protein with multiple functions

D.X. Liu; Q. Yuan; Ying Liao

Abstract.Coronavirus envelope protein is a small membrane protein and minor component of the virus particles. It plays important roles in virion assembly and morphogenesis, alteration of the membrane permeability of host cells and virus-host cell interaction. Here we review recent progress in characterization of the biochemical properties, membrane topology and functions of the protein.


Virology | 2011

Regulation of the p38 mitogen-activated protein kinase and dual-specificity phosphatase 1 feedback loop modulates the induction of interleukin 6 and 8 in cells infected with coronavirus infectious bronchitis virus

Ying Liao; Xiaoxing Wang; Mei Huang; James P. Tam; Ding Xiang Liu

Abstract Induction of pro-inflammatory response is a crucial cellular process that detects and controls the invading viruses at early stages of the infection. Along with other innate immunity, this nonspecific response would either clear the invading viruses or allow the adaptive immune system to establish an effective antiviral response at late stages of the infection. The objective of this study was to characterize cellular mechanisms exploited by coronavirus infectious bronchitis virus (IBV) to regulate the induction of two pro-inflammatory cytokines, interleukin (IL)-6 and IL-8, at the transcriptional level. The results showed that IBV infection of cultured human and animal cells activated the p38 mitogen-activated protein kinase (MAPK) pathway and induced the expression of IL-6 and IL-8. Meanwhile, IBV has developed a strategy to counteract the induction of IL-6 and IL-8 by inducing the expression of dual-specificity phosphatase 1 (DUSP1), a negative regulator of the p38 MAPK, in order to limit the production of an excessive amount of IL-6 and IL-8 in the infected cells. As activation of the p38 MAPK pathway and induction of IL-6 and IL-8 may have multiple pathogenic effects on the whole host as well as on individual infected cells, regulation of the p38 MAPK and DUSP1 feedback loop by IBV may modulate the pathogenesis of the virus.


PLOS ONE | 2012

Up-Regulation of Mcl-1 and Bak by Coronavirus Infection of Human, Avian and Animal Cells Modulates Apoptosis and Viral Replication

Yanxin Zhong; Ying Liao; Shouguo Fang; James P. Tam; Ding Xiang Liu

Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle.


Viruses | 2016

Regulation of Stress Responses and Translational Control by Coronavirus

To Sing Fung; Ying Liao; Ding Xiang Liu

Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.

Collaboration


Dive into the Ying Liao's collaboration.

Top Co-Authors

Avatar

James P. Tam

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Ding Xiang Liu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

D.X. Liu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

To Sing Fung

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Mei Huang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Q. Yuan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Yanxin Zhong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Jaume Torres

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Si Min Zhang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Tuan Ling Neo

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge