Ying Maggie Chen
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ying Maggie Chen.
Journal of The American Society of Nephrology | 2013
Ying Maggie Chen; Yuefang Zhou; Gloriosa Go; Joseph T. Marmerstein; Yamato Kikkawa; Jeffrey H. Miner
Mutations in the laminin β2 gene (LAMB2) cause Pierson syndrome, a severe congenital nephrotic syndrome with ocular and neurologic defects. LAMB2 is a component of the laminin-521 (α5β2γ1) trimer, an important constituent of the glomerular basement membrane (GBM). The C321R-LAMB2 missense mutation leads to congenital nephrotic syndrome but only mild extrarenal symptoms; the mechanisms underlying the development of proteinuria with this mutation are unclear. We generated three transgenic mouse lines, in which rat C321R-LAMB2 replaced mouse LAMB2 in the GBM. During the first postnatal month, expression of C321R-LAMB2 attenuated the severe proteinuria exhibited by Lamb2(-/-) mice in a dose-dependent fashion; proteinuria eventually increased, however, leading to renal failure. The C321R mutation caused defective secretion of laminin-521 from podocytes to the GBM accompanied by podocyte endoplasmic reticulum (ER) stress, likely resulting from protein misfolding. Moreover, ER stress preceded the onset of significant proteinuria and was manifested by induction of the ER-initiated apoptotic signal C/EBP homologous protein (CHOP), ER distention, and podocyte injury. Treatment of cells expressing C321R-LAMB2 with the chemical chaperone taurodeoxycholic acid (TUDCA), which can facilitate protein folding and trafficking, greatly increased the secretion of the mutant LAMB2. Taken together, these results suggest that the mild variant of Pierson syndrome caused by the C321R-LAMB2 mutation may be a prototypical ER storage disease, which may benefit from treatment approaches that target the handling of misfolded proteins.
Journal of The American Society of Nephrology | 2011
Ying Maggie Chen; Yamato Kikkawa; Jeffrey H. Miner
Laminin β2 is a component of laminin-521, which is an important constituent of the glomerular basement membrane (GBM). Null mutations in laminin β2 (LAMB2) cause Pierson syndrome, a severe congenital nephrotic syndrome with ocular and neurologic defects. In contrast, patients with LAMB2 missense mutations, such as R246Q, can have less severe extrarenal defects but still exhibit congenital nephrotic syndrome. To investigate how such missense mutations in LAMB2 cause proteinuria, we generated three transgenic lines of mice in which R246Q-mutant rat laminin β2 replaced the wild-type mouse laminin β2 in the GBM. These transgenic mice developed much less severe proteinuria than their nontransgenic Lamb2-deficient littermates; the level of proteinuria correlated inversely with R246Q-LAMB2 expression. At the onset of proteinuria, expression and localization of proteins associated with the slit diaphragm and foot processes were normal, and there were no obvious ultrastructural abnormalities. Low transgene expressors developed heavy proteinuria, foot process effacement, GBM thickening, and renal failure by 3 months, but high expressors developed only mild proteinuria by 9 months. In vitro studies demonstrated that the R246Q mutation results in impaired secretion of laminin. Taken together, these results suggest that the R246Q mutation causes nephrotic syndrome by impairing secretion of laminin-521 from podocytes into the GBM; however, increased expression of the mutant protein is able to overcome this secretion defect and improve glomerular permselectivity.
Translational Research | 2012
Ying Maggie Chen; Jeffrey H. Miner
The glomerular basement membrane (GBM) is lined by fenestrated endothelium from the capillary-lumen side and by interdigitating foot processes of the podocytes from the urinary- space side. These three layers of the glomerular capillary wall constitute the functional unit of the glomerular filtration barrier. The GBM is assembled through an interweaving of type IV collagen with laminins, nidogen, and sulfated proteoglycans. Mutations in genes encoding LAMB2, COL4A3, COL4A4, and COL4A5 cause glomerular disease in humans as well as in mice. In addition, laminin α5 mutation in podocytes leads to proteinuria and renal failure in mice. Moreover, more neoepitopes in Goodpastures disease and for the first time alloepitopes in Alport post-transplantation nephritis have been located in the collagen α5(IV) NC1 domain. These discoveries underscore the importance of the GBM in establishing and maintaining the integrity of the glomerular filtration barrier.
BMC Nephrology | 2015
Ying Maggie Chen; Helen Liapis
Recent advances show that human focal segmental glomerulosclerosis (FSGS) is a primary podocytopathy caused by podocyte-specific gene mutations including NPHS1, NPHS2, WT-1, LAMB2, CD2AP, TRPC6, ACTN4 and INF2. This review focuses on genes discovered in the investigation of complex FSGS pathomechanisms that may have implications for the current FSGS classification scheme. It also recounts recent recommendations for clinical management of FSGS based on translational studies and clinical trials. The advent of next-generation sequencing promises to provide nephrologists with rapid and novel approaches for the diagnosis and treatment of FSGS. A stratified and targeted approach based on the underlying molecular defects is evolving.
Journal of The American Society of Nephrology | 2016
Yeawon Kim; Heedoo Lee; Scott R. Manson; Maria Lindahl; Bradley S. Evans; Jeffrey H. Miner; Fumihiko Urano; Ying Maggie Chen
Endoplasmic reticulum (ER) stress and disrupted proteostasis contribute to the pathogenesis of a variety of glomerular and tubular diseases. Thus, it is imperative to develop noninvasive biomarkers for detecting ER stress in podocytes or tubular cells in the incipient stage of disease, when a kidney biopsy is not yet clinically indicated. Mesencephalic astrocyte-derived neurotrophic factor (MANF) localizes to the ER lumen and is secreted in response to ER stress in several cell types. Here, using mouse models of human nephrotic syndrome caused by mutant laminin β2 protein-induced podocyte ER stress and AKI triggered by tunicamycin- or ischemia-reperfusion-induced tubular ER stress, we examined MANF as a potential urine biomarker for detecting ER stress in podocytes or renal tubular cells. ER stress upregulated MANF expression in podocytes and tubular cells. Notably, urinary MANF excretion concurrent with podocyte or tubular cell ER stress preceded clinical or histologic manifestations of the corresponding disease. Thus, MANF can potentially serve as a urine diagnostic or prognostic biomarker in ER stress-related kidney diseases to help stratify disease risk, predict disease progression, monitor treatment response, and identify subgroups of patients who can be treated with ER stress modulators in a highly targeted manner.
PLOS ONE | 2016
Sudhir P. Singh; Scott R. Manson; Heedoo Lee; Yeawon Kim; Tuoen Liu; Qiusha Guo; Julio J. Geminiani; Ying Maggie Chen
Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans.
Translational Research | 2017
Yeawon Kim; Sun-Ji Park; Ying Maggie Chen
&NA; Mesencephalic astrocyte‐derived neurotrophic factor (MANF), a newly identified 18‐kDa soluble protein, localizes to the luminal endoplasmic reticulum (ER), whose stress can stimulate MANF expression and secretion. In Drosophila and zebrafish, MANF regulates dopaminergic neuron development. In contrast, in mice, MANF deficiency leads to diabetes and activation of the unfolded protein response. Recent studies in rodent models have demonstrated that MANF mitigates diabetes, exerts neurotrophic function in neurodegenerative disease, protects cardiomyocytes and neurons in myocardial infarction and cerebral ischemia, respectively, and promotes immune cell phenotype switch from proinflammatory macrophages to prorepair anti‐inflammatory macrophages. The cytoprotective mechanisms of MANF on ER stress are currently under active investigation. In addition, for the first time, we have discovered that MANF can potentially serve as a urinary ER stress biomarker in ER stress–mediated kidney disease. These studies have underscored the diagnostic and therapeutic importance of MANF in ER diseases.
JCI insight | 2017
Yeawon Kim; Sun-Ji Park; Scott R. Manson; Carlos Molina; Kendrah Kidd; Heather Thiessen-Philbrook; Rebecca Perry; Helen Liapis; Stanislav Kmoch; Chirag R. Parikh; Anthony J. Bleyer; Ying Maggie Chen
ER stress has emerged as a signaling platform underlying the pathogenesis of various kidney diseases. Thus, there is an urgent need to develop ER stress biomarkers in the incipient stages of ER stress-mediated kidney disease, when a kidney biopsy is not yet clinically indicated, for early therapeutic intervention. Cysteine-rich with EGF-like domains 2 (CRELD2) is a newly identified protein that is induced and secreted under ER stress. For the first time to our knowledge, we demonstrate that CRELD2 can serve as a sensitive urinary biomarker for detecting ER stress in podocytes or renal tubular cells in murine models of podocyte ER stress-induced nephrotic syndrome and tunicamycin- or ischemia-reperfusion-induced acute kidney injury (AKI), respectively. Most importantly, urinary CRELD2 elevation occurs in patients with autosomal dominant tubulointerstitial kidney disease caused by UMOD mutations, a prototypical tubular ER stress disease. In addition, in pediatric patients undergoing cardiac surgery, detectable urine levels of CRELD2 within postoperative 6 hours strongly associate with severe AKI after surgery. In conclusion, our study has identified CRELD2 as a potentially novel urinary ER stress biomarker with potential utility in early diagnosis, risk stratification, treatment response monitoring, and directing of ER-targeted therapies in selected patient subgroups in the emerging era of precision nephrology.
BMC Nephrology | 2017
Anubha Mutneja; L. Nicholas Cossey; Helen Liapis; Ying Maggie Chen
BackgroundCastleman’s disease (CD) is an uncommon, heterogeneous lympho-proliferative disorder leading to high circulating levels of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). Renal involvement has been only described in a limited number of small studies. Herein, we report a rare case of renal thrombotic microangiopathy (TMA) associated with CD and investigate the podocyte expression of VEGF in the renal biopsy prior to initiation of treatment.Case presentationAn 18-year-old male presented with fever, diarrhea, diffuse lymphadenopathy, ascites and acute kidney injury. Laboratory tests for hemolytic uremic syndrome and thrombotic thrombocytopenic purpura were negative. The kidney biopsy showed TMA. An excisional lymph node biopsy was consistent with CD, plasma cell variant. Immunofluorescence staining showed suppressed podocyte VEGF expression. Chemotherapy that inhibits production of inflammatory mediators including IL-6 and VEGF led to complete recovery of renal function.ConclusionsOur case illustrates a rare renal histological feature of CD. IL-6 and VEGF are postulated to suppress glomerular VEGF expression, thereby causing renal TMA. Therapy directed against these inflammatory mediators may have important therapeutic implications.
Pediatric Nephrology | 2018
Sun-Ji Park; Yeawon Kim; Ying Maggie Chen
The advent of next-generation sequencing (NGS) in recent years has led to a rapid discovery of novel or rare genetic variants in human kidney cell genes, which is transforming the risk assessment, diagnosis, and treatment of kidney disease. Mutations may lead to protein misfolding, disruption of protein trafficking, and endoplasmic reticulum (ER) retention. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and unfolded protein response. Mutations in nephrin (NPHS1), podocin (NPHS2), laminin β2 (LAMB2), and α-actinin-4 (ACTN4) have been shown to induce ER stress in HEK293 cells and podocytes in hereditary nephrotic syndromes; various founder mutations in collagen IV α chains (COL4A) have been demonstrated to activate podocyte ER stress in collagen IV nephropathies; and mutations in uromodulin (UMOD) have been reported to trigger tubular ER stress in autosomal dominant tubulointerstitial kidney disease. Meanwhile, ER resident protein SEC63 may modify disease severity in autosomal dominant polycystic kidney disease. These findings underscore the importance of ER stress in the pathogenesis of monogenic kidney disease. Recently, we have identified mesencephalic astrocyte-derived neurotrophic factor (MANF) and cysteine-rich with EGF-like domains 2 (CRELD2) as urinary ER stress biomarkers in ER stress-mediated kidney diseases.