Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying Nai Wang is active.

Publication


Featured researches published by Ying Nai Wang.


Journal of Biological Chemistry | 2010

The translocon Sec61β localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus

Ying Nai Wang; Hirohito Yamaguchi; Longfei Huo; Yi Du; Hong Jen Lee; Heng Huan Lee; Hongmei Wang; Jung Mao Hsu; Mien Chie Hung

Accumulating evidence indicates that endocytosis plays an essential role in the nuclear transport of the ErbB family members, such as epidermal growth factor receptor (EGFR) and ErbB-2. Nevertheless, how full-length receptors embedded in the endosomal membrane pass through the nuclear pore complexes and function as non-membrane-bound receptors in the nucleus remains unclear. Here we show that upon EGF treatment, the biotinylated cell surface EGFR is trafficked to the inner nuclear membrane (INM) through the nuclear pore complexes, remaining in a membrane-bound environment. We further find that importin β regulates EGFR nuclear transport to the INM in addition to the nucleus/nucleoplasm. Unexpectedly, the well known endoplasmic reticulum associated translocon Sec61β is found to reside in the INM and associate with EGFR. Knocking down Sec61β expression reduces EGFR level in the nucleoplasm portion and accumulates it in the INM portion. Thus, the Sec61β translocon plays an unrecognized role in the release of the membrane-anchored EGFR from the lipid bilayer of the INM to the nucleus. The newly identified Sec61β function provides an alternative pathway for nuclear transport that can be utilized by membrane-embedded proteins such as full-length EGFR.


Biochemical and Biophysical Research Communications | 2010

COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport.

Ying Nai Wang; Hongmei Wang; Hirohito Yamaguchi; Hong Jen Lee; Heng Huan Lee; Mien Chie Hung

Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH(2)-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with gamma-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.


Oncogene | 2009

PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells.

Quanhong Sun; Lihua Ming; Sufi M. Thomas; Ying Nai Wang; Zhuo Georgia Chen; Robert L. Ferris; Jennifer R. Grandis; Lin Zhang; Jindan Yu

Overexpression of epidermal growth factor receptor (EGFR) is found in over 80% of head and neck squamous cell carcinomas (HNSCC) and associated with poor clinical outcomes. EFGR selective tyrosine kinase inhibitors (TKIs) or antibodies have recently emerged as promising treatments for solid tumors, including HNSCC, though the response rate to these agents is low. p53 upregulated modulator of apoptosis (PUMA), a BH3-only Bcl-2 family protein, is required for apoptosis induced by p53 and various chemotherapeutic agents. In this study, we show that PUMA induction is correlated with EGFR-TKI sensitivity, and is mediated through the p53 family protein p73β and inhibition of the PI3K/AKT pathway. In some HNSCC cells, the gefitinib-induced degradation of oncogenic ΔNp63 seems to facilitate p73-mediated PUMA transcription. Inhibiting PUMA expression by small hairpin RNA (shRNA) impairs gefitinib-induced apoptosis. Furthermore, PUMA or BH3 mimetics sensitize HNSCC cells to gefitinib-induced apoptosis. Our results suggest that PUMA induction through p73 represents a new mechanism of EGFR inhibitor-induced apoptosis, and provide potential ways for enhancing and predicting the sensitivity to EGFR-targeted therapies in HNSCC.


Journal of Biological Chemistry | 2012

Membrane-bound trafficking regulates nuclear transport of integral epidermal growth factor receptor (EGFR) and ErbB-2

Ying Nai Wang; Heng Huan Lee; Hong Jen Lee; Yi Du; Hirohito Yamaguchi; Mien Chie Hung

Background: EGFR is translocated to the inner nuclear membrane through the INTERNET (integral trafficking from the ER to the nuclear envelope transport) pathway. Results: INTERNET regulates EGFR and ErbB-2 but not FGFR-1. Conclusion: At least two different pathways of nuclear transport exist for cell surface receptors. Significance: This provides a new direction for investigating the trafficking mechanisms of various nuclear RTKs. Nuclear localization of multiple receptor-tyrosine kinases (RTKs), such as EGF receptor (EGFR), ErbB-2, FGF receptor (FGFR), and many others, has been reported by several groups. We previously showed that cell surface EGFR is trafficked to the nucleus through a retrograde pathway from the Golgi to the endoplasmic reticulum (ER) and that EGFR is then translocated to the inner nuclear membrane (INM) through the INTERNET (integral trafficking from the ER to the nuclear envelope transport) pathway. However, the nuclear trafficking mechanisms of other membrane RTKs, apart from EGFR, remain unclear. The purpose of this study was to compare the nuclear transport of EGFR family proteins with that of FGFR-1. Interestingly, we found that digitonin permeabilization, which selectively releases soluble nuclear transporters from the cytoplasm and has been shown to inhibit nuclear transport of FGFR-1, had no effects on EGFR nuclear transport, raising the possibility that EGFR and FGFR-1 use different pathways to be translocated into the nucleus. Using the subnuclear fractionation assay, we further demonstrated that biotinylated cell surface ErbB-2, but not FGFR-1, is targeted to the INM, associating with Sec61β in the INM, similar to the nuclear trafficking of EGFR. Thus, ErbB-2, but not FGFR-1, shows a similar trafficking pathway to EGFR for translocation to the nucleus, indicating that at least two different pathways of nuclear transport exist for cell surface receptors. This finding provides a new direction for investigating the trafficking mechanisms of various nuclear RTKs.


Journal of Clinical Investigation | 2015

PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

Hsin Wei Liao; Jung Mao Hsu; Weiya Xia; Hung Ling Wang; Ying Nai Wang; Wei Chao Chang; Stefan T. Arold; Chao Kai Chou; Pei Hsiang Tsou; Hirohito Yamaguchi; Yueh Fu Fang; Hong Jen Lee; Heng Huan Lee; Shyh Kuan Tai; Mhu Hwa Yang; Maria Pia Morelli; Malabika Sen; John E. Ladbury; Chung-Hsuan Chen; Jennifer R. Grandis; Scott Kopetz; Mien Chie Hung

Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.


Cancer Research | 2011

FOXO3a-Dependent Mechanism of E1A-Induced Chemosensitization

Jen Liang Su; Xiaoyun Cheng; Hirohito Yamaguchi; Yi Wen Chang; Chao Feng Hou; Dung Fang Lee; How Wen Ko; Kuo-Tai Hua; Ying Nai Wang; Michael Hsiao; Po Shen B. Chen; Jung Mao Hsu; Robert C. Bast; Gabriel N. Hortobagyi; Mien Chie Hung

Gene therapy trials in human breast, ovarian, and head and neck tumors indicate that adenovirus E1A can sensitize cancer cells to the cytotoxic effects of paclitaxel in vitro and in vivo. Resistance to paclitaxel has been reported to occur in cells expressing low levels of the Forkhead transcription factor FOXO3a. In this article, we report that FOXO3a is critical for E1A-mediated chemosensitization to paclitaxel. RNA interference-mediated knockdown of FOXO3a abolished E1A-induced sensitivity to paclitaxel. Mechanistic investigations indicated that E1A indirectly stabilized FOXO3a by acting at an intermediate step to inhibit a ubiquitin-dependent proteolysis pathway involving the E3 ligase βTrCP and the FOXO3a inhibitory kinase IKKβ. E1A derepressed this inhibitory pathway by stimulating expression of the protein phosphatase 2A (PP2A)/C protein phosphatases, which by binding to the TGF-β-activated kinase TAK1, inhibited its ability to activate IKKβ and, thereby, to suppress βTrCP-mediated degradation of FOXO3a. Thus, by stimulating PP2A/C expression, E1A triggers a signaling cascade that stabilizes FOXO3a and mediates chemosensitization. Our findings provide a leap forward in understanding paclitaxel chemosensitization by E1A, and offer a mechanistic rational to apply E1A gene therapy as an adjuvant for improving therapeutic outcomes in patients receiving paclitaxel treatment.


Clinical Cancer Research | 2013

Caspase-Independent Cell Death Is Involved in the Negative Effect of EGF Receptor Inhibitors on Cisplatin in Non–Small Cell Lung Cancer Cells

Hirohito Yamaguchi; Jennifer L. Hsu; Chun Te Chen; Ying Nai Wang; Ming Chuan Hsu; Shih Shin Chang; Yi Du; How Wen Ko; Roy S. Herbst; Mien Chie Hung

Purpose: Results of multiple clinical trials suggest that EGF receptor (EGFR) tyrosine kinase inhibitors (TKI) exhibit negative effects on platinum-based chemotherapy in patients with lung cancer with wild-type (WT) EGFR, but the underlying molecular mechanisms are still uncertain. Studies that identify the mechanism of how TKIs negatively affect patients with WT EGFR are important for future development of effective strategies to target lung cancer. Thus, we returned to in vitro study to investigate and determine a possible explanation for this phenomenon. Experimental Design: We investigated the effects of TKIs and cisplatin on caspase-independent cell death (CID) and the role of CID in the efficacy of each drug and the combination. Furthermore, we studied the mechanism by which EGFR signaling pathway is involved in CID. Finally, on the basis of the identified mechanism, we tested the combinational effects of cisplatin plus suberoylanilide hydroxamic acid (SAHA) or erastin on CID. Results: We found that gefitinib inhibited cisplatin-induced CID but not caspase-dependent apoptotic cell death. In WT EGFR cells, gefitinib not only inhibited CID but also failed to induce apoptosis, therefore compromising the efficacy of cisplatin. Inhibition of EGFR-ERK/AKT by gefitinib activates FOXO3a, which in turn reduces reactive oxygen species (ROS) and ROS-mediated CID. To overcome this, we showed that SAHA and erastin, the inducers of ROS-mediated CID, strongly enhanced the effect of cisplatin in WT EGFR cells. Conclusion: TKI-mediated inhibition of CID plays an important role in the efficacy of chemotherapy. Moreover, FOXO3a is a key factor in the negative effects of TKI by eliminating cisplatin-induced ROS. Clin Cancer Res; 19(4); 845–54. ©2012 AACR.


Cell Death and Disease | 2015

ARHI (DIRAS3)-mediated autophagy-associated cell death enhances chemosensitivity to cisplatin in ovarian cancer cell lines and xenografts

Michele N. Washington; Grace K. Suh; Aaron Orozco; Margie N. Sutton; Hailing Yang; Ying Nai Wang; Weiqun Mao; Steven W. Millward; Argentina Ornelas; Neely Atkinson; Warren S L Liao; Robert C. Bast; Zhen Lu

Autophagy can sustain or kill tumor cells depending upon the context. The mechanism of autophagy-associated cell death has not been well elucidated and autophagy has enhanced or inhibited sensitivity of cancer cells to cytotoxic chemotherapy in different models. ARHI (DIRAS3), an imprinted tumor suppressor gene, is downregulated in 60% of ovarian cancers. In cell culture, re-expression of ARHI induces autophagy and ovarian cancer cell death within 72 h. In xenografts, re-expression of ARHI arrests cell growth and induces autophagy, but does not kill engrafted cancer cells. When ARHI levels are reduced after 6 weeks, dormancy is broken and xenografts grow promptly. In this study, ARHI-induced ovarian cancer cell death in culture has been found to depend upon autophagy and has been linked to G1 cell-cycle arrest, enhanced reactive oxygen species (ROS) activity, RIP1/RIP3 activation and necrosis. Re-expression of ARHI enhanced the cytotoxic effect of cisplatin in cell culture, increasing caspase-3 activation and PARP cleavage by inhibiting ERK and HER2 activity and downregulating XIAP and Bcl-2. In xenografts, treatment with cisplatin significantly slowed the outgrowth of dormant autophagic cells after reduction of ARHI, but the addition of chloroquine did not further inhibit xenograft outgrowth. Taken together, we have found that autophagy-associated cancer cell death and autophagy-enhanced sensitivity to cisplatin depend upon different mechanisms and that dormant, autophagic cancer cells are still vulnerable to cisplatin-based chemotherapy.


Cell Death and Disease | 2012

ZNF143 transcription factor mediates cell survival through upregulation of the GPX1 activity in the mitochondrial respiratory dysfunction

Weiqin Lu; Z. Chen; Hui Zhang; Ying Nai Wang; Yongde Luo; Peng Huang

Mitochondrial respiratory dysfunction has intimate relationship with redox regulation. The key mechanism about how the mitochondrial respiration-defective cells survive oxidative stress is still elusive. Here, we report that transcription factor zinc-finger protein 143 (ZNF143) expression and glutathione peroxidase (GPX) activity are markedly increased in the mitochondrial respiratory-defective cells induced by dominant-negative DNA polymerase γ (POLGdn). In this work, investigation of the cellular antioxidant glutathione (GSH) and enzyme GPX activity in the mitochondrial dysfunction revealed the presence of an increased synthesis of GSH through the activation of GCLC (glutamate–cysteine ligase catalytic subunit) and GCLM (glutamate–cysteine ligase regulatory subunit) gene expression, and also a positive upregulation of glutathione peroxidase 1 (GPX1) activity by the transcription factor ZNF143. Significant increase in gene expression of SepSecS, the key enzyme responsible for selenocysteine transfer RNA (tRNA) synthesis, further confirmed the activation of the selenocysteine synthesis pathway. By using both GPX1 and ZNF143 knockdown, we provided insight into the involvement of ZNF143 in promoting GPX1 activity and protecting cells from oxidative damage and cisplatin treatment in the mitochondrial dysfunction. Furthermore, we reported the possible regulation of mitochondrial transcription factor A (TFAM) in the mitochondrial dysfunction. Our findings delineate an important antioxidant survival pathway that allows the mitochondrial-defective cells to survive oxidative stress and cisplatin treatment.


Lab on a Chip | 2010

High speed digital protein interaction analysis using microfluidic single molecule detection system

Chao Kai Chou; Nan Jing; Hirohito Yamaguchi; Pei Hsiang Tsou; Heng Huan Lee; Chun Te Chen; Ying Nai Wang; Sungmin Hong; Chin Su; Jun Kameoka; Mien Chie Hung

The understanding of protein interaction dynamics is important for signal transduction research but current available techniques prove difficult in addressing this issue. Thus, using the microfluidic approach, we developed a digital protein analytical platform and methodology named MAPS (Microfluidic system Analyzing Protein in Single complex) that can measure the amount of target proteins and protein complexes at the digitally single molecule resolution. By counting protein events individually, this system can provide rough protein interaction ratios which will be critical for understanding signal transduction dynamics. In addition, this system only requires less than an hour to characterize the target protein sample, which is much quicker than conventional approaches. As a proof of concept, we have determined the interaction ratios of oncogenic signaling protein complexes EGFR/Src and EGFR/STAT3 before and after EGF ligand stimulation. To the best of our knowledge, this is the first time that the interaction ratio between EGFR and its downstream proteins has been characterized. The information from MAPS will be critical for the study of protein signal transduction quantitation and dynamics.

Collaboration


Dive into the Ying Nai Wang's collaboration.

Top Co-Authors

Avatar

Mien Chie Hung

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Heng Huan Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hirohito Yamaguchi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Hsu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chao Kai Chou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chun Te Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hong Jen Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jung Mao Hsu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge