Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying Tsai is active.

Publication


Featured researches published by Ying Tsai.


Stem Cell Research | 2012

Eltrombopag, a thrombopoietin receptor agonist, enhances human umbilical cord blood hematopoietic stem/primitive progenitor cell expansion and promotes multi-lineage hematopoiesis.

Hongliang Sun; Ying Tsai; Irena Nowak; Jane L. Liesveld; Yuhchyau Chen

Umbilical cord blood (UCB) transplantation has emerged as a promising therapy, but it is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopags effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, and CD41+ cells in bone marrow compartment without effects on mouse bone marrow cells in the NOD/SCID mice xenotransplant model. Consequently, eltrombopag increased peripheral human platelets and white blood cells. We further examined effects in the STAT and AKT signaling pathways in serum-free cultures. Eltrombopag expanded human CD34+ CD38-, CD34+, and CD41+ cells. Both eltrombopag and recombinant human TPO (rhTPO) induced phosphorylation of STAT5 of CD34+ CD41-, CD34- CD41+, and CD34- CD41- cells. rhTPO preferentially induced pSTAT3, pAKT, and more pSTAT5 in CD34- C41+ cells, while eltrombopag had no effects on pSTAT3. In conclusion, eltrombopag enhanced expansion of HSCs/HPCs of human UCB in vivo and in vitro, and promoted multi-lineage hematopoiesis through the expansion of bone marrow HSCs/HPCs of human UCB in vivo. Eltrombopag differed somewhat from rhTPO in the signal transduction pathways by favoring earlier HSC/HPC populations.


Oncotarget | 2016

IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer

Soo Ok Lee; Xiaodong Yang; Shanzhou Duan; Ying Tsai; Laura R. Strojny; Peter C. Keng; Yuhchyau Chen

We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133– cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133– sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133– cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133− and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133– and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133– cells.


Inhalation Toxicology | 1997

EFFECTS OF INHALED SULFURIC ACID AEROSOLS ON PULMONARY IMMUNOCOMPETENCE : A COMPARATIVE STUDY IN HUMANS AND ANIMALS

Judith T. Zelikoff; Mark W. Frampton; Mitchell D. Cohen Paul E. Morrow; Maureen Sisco; Ying Tsai; Mark J. Utell Richard B. Schlesinger

There is increasing concern regarding the potential health effects associated with the inhalation of ambient acid aerosols. Laboratory studies with animals have demonstrated that inhalation exposure to sulfuric acid (H2SO4) can alter airway responsiveness, cause cell damage leading to alveolitis and edema, produce hypertrophy/hyperplasia of epithelial secretory cells in the tracheobronchial tree, and alter nonspecific and specific immune defense mechanisms. While the adverse effects of inhaled H SO upon pulmonary 2 4 immunocompetence in animals appear relatively clear, data concerning effects on host defense in exposed humans are inconclusive and appear to contrast with those observed in animal models. Despite the fact that extrapolation between different species is of major importance in inhalation toxicology, baseline comparative data between species are lacking, which often results in the questionable validity of extrapolation modeling. This interlaboratory study was designed to compare the effects pro...


Radiation Oncology | 2015

IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation

Yuhchyau Chen; Fuquan Zhang; Ying Tsai; Xiadong Yang; Li Yang; Shanzhou Duan; Xin Wang; Peter C. Keng; Soo Ok Lee

BackgroundLocal tumor control by standard fractionated radiotherapy (RT) remains poor because of tumor resistance to radiation (radioresistance). It has been suggested that cancer stem cells (CSCs) are more radioresistant than non-CSCs. In previous studies, we have shown IL-6 promotes self-renewal of CD133+ CSC-like cells. In this study, we investigated whether IL-6 plays roles not only in promoting self-renewal of CD133+ cells after radiation, but also in conferring radioresistance of CD133+ cells in NSCLC.Materials and methodsTo compare radiation sensitivity of CSCs and non-CSCs, CD133+ CSC-like and CD133- cell populations were isolated from two NSCLC cell lines, A549 and H157, by immunomagnetic separation and their sensitivities to ionizing radiation were investigated using the clonogenic survival assay. To further study the IL-6 effect on the radiosensitivity of CD133+ CSC-like cells, CD133+ cells were isolated from A549IL-6si/sc and H157IL-6si/sc cells whose intracellular IL-6 levels were manipulated via the lentiviral transduction with IL-6siRNA. Post-irradiation DNA damage was analyzed by γ-H2AX staining and Comet assay. Molecular mechanisms by which IL-6 regulates the molecules associated with DNA repair and anti-apoptosis after radiation were analyzed by Western blot and immunofluoresecence (IF) staining analyses.ResultsNSCLC CD133+ CSC-like cells were enriched upon radiation. Survival of NSCLC CD133+ cells after radiation was higher than that of CD133- cells. Survival of IL-6 expressing NSC LC CD133+ cells (sc) was higher than that of IL-6 knocked-down cells (IL-6si) after radiation. IL-6 played a role in protecting NSCLC CD133+ cells from radiation-induced DNA damage and apoptosis.ConclusionsIL-6 signaling promotes DNA repair while protecting CD133+ CSC-like cells from apoptotic death after radiation for lung cancer. A combined therapy of radiation and agents that inhibit IL-6 signaling (or its downstream signaling) is suggested to reduce CSC-mediated radioresistance in lung cancer.


Oncotarget | 2015

IL-6 signaling contributes to cisplatin resistance in non-small cell lung cancer via the up-regulation of anti-apoptotic and DNA repair associated molecules

Shanzhou Duan; Ying Tsai; Peter C. Keng; Yongbing Chen; Soo Ok Lee; Yuhchyau Chen

Cisplatin-based chemotherapy is currently the most effective treatment regimen for non-small cell lung cancer (NSCLC), but eventually tumor resistance develops which limits its success. The potential implication of IL-6 signaling in the cisplatin resistance of NSCLC was explored by testing whether NSCLC cells with different levels of intracellular IL-6 show different responses to the cytotoxic treatment of cisplatin. When the cisplatin cytotoxicity of the IL-6 knocked down human NSCLC cells (A549IL-6si and H157IL-6si) were compared with their corresponding scramble control cells (A549sc and H157sc), higher cisplatin cytotoxicity was found in IL-6 si cells than sc cells. Subcutaneous xenograft mouse models were developed using a pair of A549sc and A549IL-6si cells. When the tumor grew to about 400 mm2, mice were treated with cisplatin and tumor regression was monitored. Higher tumor regression was detected in the A549IL-6si xenografts compared to A549sc xenografts following cisplatin treatment. Immunostaining study results from tumor tissues also supported this finding. Expression of anti-apoptotic proteins Bcl-2 and Mcl-1 and DNA repair associated molecules ATM, CHK1, TP73, p53, and ERCC1 were significantly up regulated in cisplatin-treated A549sc and H157sc cells, but no increase was detected in A549IL-6si and H157IL-6si cells. Further inhibitor studies revealed that up regulation of these molecules by IL-6 may be through activation of IL-6 downstream signaling pathways like Akt, MAPK, Stat3, and Erk. These results provide potential for combining cisplatin and inhibitors of IL-6 signaling or its downstream signaling pathway as a future therapeutic approach in preventing development of cisplatin resistant NSCLC tumors.


Inhalation Toxicology | 2001

OZONE EXPOSURE AND THE PRODUCTION OF REACTIVE OXYGEN SPECIES BY BRONCHOALVEOLAR CELLS IN HUMANS

John C. Whitin; Alfonso Torres; Paul E. Morrow; Christopher Cox; Ying Tsai; Mark J. Utell; Mark W. Frampton

Exposure to ozone injures respiratory epithelium, and the mechanisms may involve the generation of reactive oxygen species (ROS). This study tested the hypothesis that ozone exposure increases the airway burden of ROS to a greater degree in smokers than nonsmokers, and that this effect is independent of ozone-induced changes in spirometry. Healthy subjects were selected as either responders (decrement in FEV1 > 15%) or non responders (decrement in FEV1 < 5%) to ozone; each underwent 2 exposures to ozone and 1 to air, with bronchoalveolar lavage (BAL) performed 30 min (early) and 18 h (late) after exposure. Release of superoxide anion (O2-) was used as a measure of ROS release by all BAL cells, and flow cytometry was used to detect ROS production in alveolar macrophages (AM) only. Recovery of AM was approximately threefold greater in smokers than nonsmokers. Unstimulated, but not stimulated, cells obtained by BAL from smokers released approximately twofold greater amounts of O2- than cells from non smokers, both early and late after ozone exposure (p = .012 and p = .046, respectively). Stimulated, but not unstimulated, ROS generation by AM from smokers increased following ozone exposure, but the ozone effect was not significant. ROS production by AM decreased in nonsmokers (air vs. ozone late, pExposure to ozone injures respiratory epithelium, and the mechanisms may involve the generation of reactive oxygen species (ROS). This study tested the hypothesis that ozone exposure increases the airway burden of ROS to a greater degree in smokers than nonsmokers, and that this effect is independent of ozone-induced changes in spirometry. Healthy subjects were selected as either responders (decrement in FEV1 > 15%) or nonresponders (decrement in FEV1 < 5%) to ozone; each underwent 2 exposures to ozone and 1 to air, with bronchoalveolar lavage (BAL) performed 30 min (early) and 18 h (late) after exposure. Release of superoxide anion (O2(-)) was used as a measure of ROS release by all BAL cells, and flow cytometry was used to detect ROS production in alveolar macrophages (AM) only. Recovery of AM was approximately threefold greater in smokers than nonsmokers. Unstimulated, but not stimulated, cells obtained by BAL from smokers released approximately twofold greater amounts of O2(-) than cells from nonsmokers, both early and late after ozone exposure (p =.012 and p =.046, respectively). Stimulated, but not unstimulated, ROS generation by AM from smokers increased following ozone exposure, but the ozone effect was not significant. ROS production by AM decreased in nonsmokers (air vs. ozone late, p =.014). Total protein, albumin, and immunoglobulin M (IgM) increased in BAL fluid, consistent with an increase in epithelial permeability. In addition, the concentration of alpha2-macroglobulin increased approximately threefold 18 h after exposure in nonsmokers (p <.001). No relationship was found between measures of ROS production and lung function responsiveness to ozone. These studies suggest the airways of smokers experience a greater burden of ROS than those of nonsmokers following ozone exposure.


Cancer Science | 2016

Cisplatin treatment increases stemness through upregulation of hypoxia‐inducible factors by interleukin‐6 in non‐small cell lung cancer

Fuquan Zhang; Shanzhou Duan; Ying Tsai; Peter C. Keng; Yongbing Chen; Soo Ok Lee; Yuhchyau Chen

Cisplatin‐resistant A549 and H157 (A549CisR and H157CisR) non‐small cell lung cancer cells show increased stemness of cancer stem cells (CSCs) compared to their parental cells. We investigated whether interleukin‐6 (IL‐6) signaling contributes to this increased stemness in cisplatin‐resistant cells. When A549CisR and H157CisR cells were treated with neutralizing IL‐6 antibody, decreased cisplatin resistance was observed, whereas IL‐6 treatment of parental cells resulted in increased cisplatin resistance. Expression of the CSC markers was significantly upregulated in IL‐6‐expressing scramble cells (in vitro) and scramble cell‐derived tumor tissues (in vivo) after cisplatin treatment, but not in IL‐6 knocked down (IL‐6si) (in vitro) cells and in IL‐6si cell‐derived tumor tissues (in vivo), suggesting the importance of IL‐6 signaling in triggering increased stemness during cisplatin resistance development. Hypoxia inducible factors (HIFs) were upregulated by IL‐6 and responsible for the increased CSC stemness on cisplatin treatment. Mechanism dissection studies found that upregulation of HIFs by IL‐6 was through transcriptional control and inhibition of HIF degradation. Treatment of HIF inhibitor (FM19G11) abolished the upregulation of CSC markers and increased sphere formations in IL‐6 expressing cells on cisplatin treatment. In all, IL‐6‐mediated HIF upregulation is important in increasing stemness during cisplatin resistance development, and we suggest that the strategies of inhibiting IL‐6 signaling or its downstream HIF molecules can be used as future therapeutic approaches to target CSCs after cisplatin treatment for lung cancer.


Health Physics | 2010

Validating high-throughput micronucleus analysis of peripheral reticulocytes for radiation biodosimetry: benchmark against dicentric and CBMN assays in a mouse model.

Yuhchyau Chen; Ying Tsai; Irena Nowak; Nancy Wang; Ollivier Hyrien; Ruth C. Wilkins; Catherine Ferrarotto; Hongliang Sun; Stephen D. Dertinger

Automation of radiation biodosimetry is one of the top priority tasks considered by the Office of Science and Technology Policy and the Homeland Security Council in preparation for the nations readiness for a possible radionuclear terrorist attack. The Center for Biophysical Assessment and Risk Management Following Irradiation, a consortium of researchers and institutions centered at the University of Rochester, has been investigating automated scoring of radiation-induced micronucleus formation in reticulocytes for high-throughput radiation biodosimetry. The collaborative project is based on a commercially-available product by Litron Laboratories in Rochester, New York. The study was designed to validate the flow-cytometry based analysis of micronucleated reticulocyte expression for radiation biodosimetry by benchmarking against the standard lymphocyte-based biodosimetry methods in a mouse model. C57B1/6 mice and C3H mice were exposed to 137Cs total-body radiation from 0–3 Gy. Blood samples were subsequently analyzed for CD71+ micronucleated reticulocyte and reticulocyte frequencies by flow cytometry. Results showed a linear dose-response of MN-RET up to 1 Gy for C57B1/6 and 2 Gy for C3H mice. On the other hand, robust and good dose-response curves were obtained with lymphocyte-based dicentric assay and cytokinesis-block micronucleus assay up to 3 Gy. High-throughput, automated analyses of micronucleated reticulocytes is a sensitive and reproducible method for detecting recent radiation exposure. In mice, the dose range of detection is useful up to 1 Gy (C57Bl/6) and 2 Gy (C3H) but not reliable beyond these dose limits. The utilization of this automated analysis for human radiation biodosimetry is currently under investigation.


Radiation Research | 2017

IL-6 Mediates Macrophage Infiltration after Irradiation via Up-regulation of CCL2/CCL5 in Non-small Cell Lung Cancer

Xin Wang; Xiaodong Yang; Ying Tsai; Li Yang; Kuang-Hsiang Chuang; Peter C. Keng; Soo Ok Lee; Yuhchyau Chen

Radiotherapy is effective in reducing primary tumors, however, it may enhance macrophage infiltration to tumor sites, accelerating tumor progression in several ways. We investigated whether radiation can increase macrophage infiltration into non-small cell lung carcinoma (NSCLC) cells. Analysis of in vitro macrophage (differentiated THP-1 cells) migration to either nonirradiated or irradiated tumor cells showed increased migration to the irradiated tumor cells. Because the IL-6 levels in A549 and H157 cells were significantly increased after irradiation, we then investigated whether this increased IL-6 level contributes to radiation-induced macrophage migration. Radiation-induced macrophage infiltration was reduced when IL-6 was knocked down in tumor cells, indicating a positive IL-6 role in this process. To validate this in vitro result, an orthotopic mouse model was developed using a luciferase-tagged H157siIL-6/scramble control (sc) cell set. After tumors developed, the lungs were irradiated, and infiltration of endogenous macrophages and tail-vein injected fluorescent macrophages to tumor sites was investigated. In both groups, increased macrophage infiltration was observed in H157sc cell-derived xenografts compared to H157siIL-6 cell-derived xenografts, confirming the positive IL-6 role in the radiation-induced macrophage infiltration process. In mechanistic dissection studies, radiation-induced up-regulation of CCL2 and CCL5 by IL-6 was detected, and blocking the action of CCL2/CCL5 molecules significantly reduced the number of migrated macrophages to tumor cells after irradiation. These results demonstrate that targeting the IL-6 signaling or CCL2/CCL5 molecules in combination with conventional radiotherapy potentially blocks undesired radiation-induced macrophage infiltration.


Scientific Reports | 2017

Enhancing NK cell-mediated cytotoxicity to cisplatin-resistant lung cancer cells via MEK/Erk signaling inhibition

Li Yang; Mingjing Shen; Li Jun Xu; Xiaodong Yang; Ying Tsai; Peter C. Keng; Yuhchyau Chen; Soo Ok Lee

Major progress has been made clinically in inhibiting the programmed death receptor 1 (PD-1)/PD-L1 interaction to enhance T cell-mediated immune function, yet the effectiveness of anti-PD-L1/PD-1 agents in enhancing natural killer (NK) cell’s function remains largely unknown. Susceptibilities of cisplatin-resistant A549CisR and H157CisR cells vs. parental cells to the cytotoxic action of NK cells were examined. We found cisplatin-resistant cells more resistant to NK cell cytotoxicity than parental cells. There were constitutively higher expressions of PD-L1 in A549CisR and H157CisR cells than in parental cells in vitro, as well as in H157CisR cell-derived tumors than H157P cell-derived tumors. In contrast, we observed that the expression of PD-1 in NK cells was induced after co-culture with cisplatin-resistant cells. We also observed increased susceptibility of cisplatin-resistant cells to NK cell cytotoxicity when neutralizing antibody of PD-1 or PD-L1 was added. Further, we found that the NK group 2, member D (NKG2D) ligand levels were lower in A549CisR and H157CisR cells than in parental cells. Meanwhile, we discovered that the MEK/Erk signaling pathway played a significant role in this regulation, and the addition of a MEK/Erk pathway inhibitor significantly enhanced the PD-L1 Ab effect in enhancing NK cell cytotoxicity to cisplatin-resistant cells.

Collaboration


Dive into the Ying Tsai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soo Ok Lee

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Yang

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge