Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingbo Shen is active.

Publication


Featured researches published by Yingbo Shen.


Mbio | 2017

Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli

Wenjuan Yin; Hui Li; Yingbo Shen; Zhihai Liu; Shaolin Wang; Zhangqi Shen; Rong Zhang; Timothy R. Walsh; Jianzhong Shen; Yang Wang; Karen Bush

ABSTRACT The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3. The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia coli. mcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3. IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3. The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors. IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3. The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors.


Journal of Antimicrobial Chemotherapy | 2015

A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin

Yang Wang; Yuan Lv; Jiachang Cai; Stefan Schwarz; Lanqing Cui; Zhidong Hu; Rong Zhang; Jun Li; Qin Zhao; Tao He; Dacheng Wang; Zheng Wang; Yingbo Shen; Yun Li; Andrea T. Feßler; Congming Wu; Hao Yu; Xuming Deng; Xi Xia; Jianzhong Shen

OBJECTIVES The oxazolidinone-resistant Enterococcus faecalis E349 from a human patient tested negative for the cfr gene and 23S rRNA mutations. Here we report the identification of a novel oxazolidinone resistance gene, optrA, and a first investigation of the extent to which this gene was present in E. faecalis and Enterococcus faecium from humans and food-producing animals. METHODS The resistance gene optrA was identified by whole-plasmid sequencing and subsequent cloning and expression in a susceptible Enterococcus host. Transformation and conjugation assays served to investigate the transferability of optrA. All optrA-positive E. faecalis and E. faecium isolates of human and animal origin were analysed for their MICs and their genotype, as well as the location of optrA. RESULTS The novel plasmid-borne ABC transporter gene optrA from E. faecalis E349 conferred combined resistance or elevated MICs (when no clinical breakpoints were available) to oxazolidinones (linezolid and tedizolid) and phenicols (chloramphenicol and florfenicol). The corresponding conjugative plasmid pE349, on which optrA was located, had a size of 36 331 bp and also carried the phenicol exporter gene fexA. The optrA gene was functionally expressed in E. faecalis, E. faecium and Staphylococcus aureus. It was detected more frequently in E. faecalis and E. faecium from food-producing animals (20.3% and 5.7%, respectively) than from humans (4.2% and 0.6%, respectively). CONCLUSIONS Enterococci with elevated MICs of linezolid and tedizolid should be tested not only for 23S rRNA mutations and the gene cfr, but also for the novel resistance gene optrA.


Lancet Infectious Diseases | 2016

Early emergence of mcr-1 in Escherichia coli from food-producing animals

Zhangqi Shen; Yang Wang; Yingbo Shen; Jianzhong Shen; Congming Wu

www.thelancet.com/infection Vol 16 March 2016 293 of the mcr-1-positive isolates would help us to understand the origin and the dissemination of this gene. We agreed that the worldwide distribution of mcr-1 might be underestimated. Considering the continuously rising trend, and now the high positive rate of mcr-1 in bacteria of animal origin, the use of colistin in veterinary practice should be urgently reconsidered.


Lancet Infectious Diseases | 2017

Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study

Yang Wang; Guo-Bao Tian; Rong Zhang; Yingbo Shen; Jonathan M. Tyrrell; Xi Huang; Hong-Wei Zhou; Lei Lei; Hong-Yu Li; Yohei Doi; Ying Fang; Hongwei Ren; Lan-Lan Zhong; Zhangqi Shen; Kun-Jiao Zeng; Shaolin Wang; Jian-Hua Liu; Congming Wu; Timothy R. Walsh; Jianzhong Shen

BACKGROUND The mcr-1 gene confers transferable colistin resistance. mcr-1-positive Enterobacteriaceae (MCRPE) have attracted substantial medical, media, and political attention; however, so far studies have not addressed their clinical impact. Herein, we report the prevalence of MCRPE in human infections and carriage, clinical associations of mcr-1-positive Escherichia coli (MCRPEC) infection, and risk factors for MCRPEC carriage. METHODS We undertook this study at two hospitals in Zhejiang and Guangdong, China. We did a retrospective cross-sectional assessment of prevalence of MCRPE infection from isolates of Gram-negative bacteria collected at the hospitals from 2007 to 2015 (prevalence study). We did a retrospective case-control study of risk factors for infection and mortality after infection, using all MCRPEC from infection isolates and a random sample of mcr-1-negative E coli infections from the retrospective collection between 2012 and 2015 (infection study). We also did a prospective case-control study to assess risk factors for carriage of MCRPEC in rectal swabs from inpatients with MCRPEC and mcr-1 negative at the hospitals and collected between May and December, 2015, compared with mcr-1-negative isolates from rectal swabs of inpatients (colonisation study). Strains were analysed for antibiotic resistance, plasmid typing, and transfer analysis, and strain relatedness. FINDINGS We identified 21 621 non-duplicate isolates of Enterobacteriaceae, Acinetobacter spp, and Pseudomonas aeruginosa from 18 698 inpatients and 2923 healthy volunteers. Of 17 498 isolates associated with infection, mcr-1 was detected in 76 (1%) of 5332 E coli isolates, 13 (<1%) of 348 Klebsiella pneumoniae, one (<1%) of 890 Enterobacter cloacae, and one (1%) of 162 Enterobacter aerogenes. For the infection study, we included 76 mcr-1-positive clinical E coli isolates and 508 mcr-1-negative isolates. Overall, MCRPEC infection was associated with male sex (209 [41%] vs 47 [63%], adjusted p=0·011), immunosuppression (30 [6%] vs 11 [15%], adjusted p=0·011), and antibiotic use, particularly carbapenems (45 [9%] vs 18 [24%], adjusted p=0·002) and fluoroquinolones (95 [19%] vs 23 [30%], adjusted p=0·017), before hospital admission. For the colonisation study, we screened 2923 rectal swabs from healthy volunteers, of which 19 were MCRPEC, and 1200 rectal swabs from patients, of which 35 were MCRPEC. Antibiotic use before hospital admission (p<0·0001) was associated with MCRPEC carriage in 35 patients compared with 378 patients with mcr-1-negative E coli colonisation, whereas living next to a farm was associated with mcr-1-negative E coli colonisation (p=0·03, univariate test). mcr-1 could be transferred between bacteria at high frequencies (10-1 to 10-3), and plasmid types and MCRPEC multi-locus sequence types (MLSTs) were more variable in Guangdong than in Zhejiang and included the human pathogen ST131. MCRPEC also included 17 unreported ST clades. INTERPRETATION In 2017, colistin will be formally banned from animal feeds in China and switched to human therapy. Infection with MRCPEC is associated with sex, immunosuppression, and previous antibiotic exposure, while colonisation is also associated with antibiotic exposure. MLST and plasmid analysis shows that MCRPEC are diversely spread throughout China and pervasive in Chinese communities. FUNDING National Key Basic Research Program of China, National Natural Science Foundation of China/Zhejiang, National Key Research and Development Program, and MRC, UK.


Journal of Antimicrobial Chemotherapy | 2016

Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin

Tao He; Yingbo Shen; Stefan Schwarz; Jiachang Cai; Yuan Lv; Jun Li; Andrea T. Feßler; Rong Zhang; Congming Wu; Jianzhong Shen; Yang Wang

OBJECTIVES Aim of this study was to analyse 17 non-related Enterococcus faecalis isolates of human and animal origin for the genetic environment of the novel oxazolidinone/phenicol resistance gene optrA. METHODS WGS and de novo assembly were conducted to analyse the flanking sequences of the optrA gene in the 17 E. faecalis isolates. When optrA was located on a plasmid, conjugation assays were performed to check whether the plasmids are conjugative and to confirm the resistance phenotype associated with these plasmids. RESULTS All nine optrA-carrying plasmids were conjugated into E. faecalis JH2-2 and the transconjugants exhibited the optrA-associated phenotype. In these plasmids, an IS1216E element was detected either upstream and/or downstream of the optrA gene. In eight plasmids, the phenicol exporter gene fexA was found upstream of optrA and in six plasmids, a novel erm(A)-related gene for macrolide-lincosamide-streptogramin B resistance was detected downstream of optrA. When located in the chromosomal DNA, the optrA gene was found downstream of the transcriptional regulator gene araC in four isolates, or downstream of the fexA gene in another four isolates. Integration of the optrA region into a Tn558-Tn554 hybrid, located in the chromosomal radC gene, was seen in two isolates. CONCLUSIONS The findings of the present study extend the current knowledge about the genetic environment of optrA and suggest that IS1216E elements play an important role in the dissemination of optrA among different types of enterococcal plasmids. The mechanism underlying the integration of optrA into the chromosomal DNA requires further investigation.


Nature Communications | 2017

Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms

Qiue Yang; Mei Li; Owen Bradley Spiller; Diego O. Andrey; Philip Hinchliffe; Hui Li; Craig MacLean; Pannika R. Niumsup; Lydia C. Powell; Manon F. Pritchard; Andrei Papkou; Yingbo Shen; Edward Portal; Kirsty M. Sands; James Spencer; Uttapoln Tansawai; David William Thomas; Shaolin Wang; Yang Wang; Jianzhong Shen; Timothy R. Walsh

MCR-1 is a lipid A modifying enzyme that confers resistance to the antibiotic colistin. Here, we analyse the impact of MCR-1 expression on E. coli morphology, fitness, competitiveness, immune stimulation and virulence. Increased expression of mcr-1 results in decreased growth rate, cell viability, competitive ability and significant degradation in cell membrane and cytoplasmic structures, compared to expression of catalytically inactive MCR-1 (E246A) or MCR-1 soluble component. Lipopolysaccharide (LPS) extracted from mcr-1 strains induces lower production of IL-6 and TNF, when compared to control LPS. Compared to their parent strains, high-level colistin resistance mutants (HLCRMs) show reduced fitness (relative fitness is 0.41–0.78) and highly attenuated virulence in a Galleria mellonella infection model. Furthermore, HLCRMs are more susceptible to most antibiotics than their respective parent strains. Our results show that the bacterium is challenged to find a delicate equilibrium between expression of MCR-1-mediated colistin resistance and minimalizing toxicity and thus ensuring cell survival.The plasmid-encoded MCR-1 enzyme modifies bacterial lipid A, thus conferring resistance to the antibiotic colistin. Here, Yang et al. show that MCR-1 expression can decrease in vitro growth rate, fitness and immune stimulation, and can reduce virulence in a Galleria mellonella infection model.


Nature microbiology | 2018

Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China

Yingbo Shen; Hong-Wei Zhou; Jiao Xu; Yongqiang Wang; Qijing Zhang; Timothy R. Walsh; Bing Shao; Congming Wu; Yan Yan Hu; Lu Yang; Zhangqi Shen; Zuowei Wu; Qiaoling Sun; Yanran Ou; Yueling Wang; Shaolin Wang; Yongning Wu; Chang Cai; Juan Li; Jianzhong Shen; Rong Zhang; Yang Wang

MCR-1-positve Escherichia coli (MCRPEC) have been reported in humans worldwide; however, thus far, their prevalence is low and potential sources for human mcr-1 carriage have not yet been identified. Here, we analyse a nationwide epidemiological dataset on MCRPEC in humans throughout China and assess the factors associated with MCRPEC carriage using natural and national anthropogenic data. We identified 774 non-duplicate MCRPEC isolates from 774 stool samples collected from 5,159 healthy individuals in 30 provinces and municipalities in 2016, with a prevalence of MCRPEC ranging from 3.7 to 32.7% (average: 15.0%)—substantially higher than previously reported. MCRPEC carriage was associated with provincial regions, the production of sheep and freshwater aquaculture, annual consumption of total meat, pork and mutton, and daily intake of aquaculture products. MCRPEC was significantly more prevalent in provinces with higher aquaculture industries. Whole-genome sequencing analysis revealed that the MCRPEC isolates were clustered into four distinct lineages, two of which were dominant and harboured most of the MCRPEC isolates. The high prevalence of MCRPEC in the community poses a substantial risk for colistin usage in clinical practice and suggests the need for intestinal screening of mcr-1 carriers in intensive care units in Chinese hospitals. Furthermore, our data suggest that aquaculture is a significant reservoir of mcr-1.MCR-1-positive Escherichia coli carriage in humans across China is associated with anthropogenic factors, including meat consumption and aquatic food production.


Journal of Clinical Microbiology | 2018

Rapid Increase in Prevalence of Carbapenem-Resistant Enterobacteriaceae (CRE) and Emergence of Colistin Resistance Gene mcr-1 in CRE in a Hospital in Henan, China

Yi Li; Qiao-ling Sun; Yingbo Shen; Yangjunna Zhang; Jun-wen Yang; Lingbin Shu; Hong-Wei Zhou; Yang Wang; Bing Wang; Rong Zhang; Shaolin Wang; Zhangqi Shen

ABSTRACT The global spread of carbapenem-resistant Enterobacteriaceae (CRE) is one of the most severe threats to human health in a clinical setting. The recent emergence of plasmid-mediated colistin resistance gene mcr-1 among CRE strains greatly compromises the use of colistin as a last resort for the treatment of infections caused by CRE. This study aimed to understand the current epidemiological trends and characteristics of CRE from a large hospital in Henan, the most populous province in China. From 2014 to 2016, a total of 7,249 Enterobacteriaceae isolates were collected from clinical samples, among which 18.1% (1,311/7,249) were carbapenem resistant. Carbapenem-resistant Klebsiella pneumoniae and carbapenem-resistant Escherichia coli were the two most common CRE species, with Klebsiella pneumoniae carbapenemases (KPC) and New Delhi metallo-β-lactamases (NDM), respectively, responsible for the carbapenem resistance of the two species. Notably, >57.0% (n = 589) of the K. pneumoniae isolates from the intensive care unit were carbapenem resistant. Furthermore, blaNDM-5 and mcr-1 were found to coexist in one E. coli isolate, which exhibited resistance to almost all tested antibiotics. Overall, we observed a significant increase in the prevalence of CRE isolates during the study period and suggest that carbapenems may no longer be considered to be an effective treatment for infections caused by K. pneumoniae in the studied hospital.


Mbio | 2017

Erratum for Yin et al., “Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli”

Wenjuan Yin; Hui Li; Yingbo Shen; Zhihai Liu; Shaolin Wang; Zhangqi Shen; Rong Zhang; Timothy R. Walsh; Jianzhong Shen; Yang Wang

Wenjuan Yin,a Hui Li,a Yingbo Shen,a Zhihai Liu,a Shaolin Wang,a Zhangqi Shen,a Rong Zhang,b Timothy R. Walsh,c Jianzhong Shen,a Yang Wanga Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, Chinaa; The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, Chinab; Department of Medical Microbiology and Infectious Disease, Institute of Infection and Immunity, Heath Park Hospital, Cardiff, United Kingdomc


Mbio | 2018

Heterogeneous and Flexible Transmission of mcr-1 in Hospital-Associated Escherichia coli

Yingbo Shen; Zuowei Wu; Yang Wang; Rong Zhang; Hong-Wei Zhou; Shaolin Wang; Lei Lei; Mei Li; Jiachang Cai; Jonathan M. Tyrrell; Guo-Bao Tian; Congming Wu; Qijing Zhang; Jianzhong Shen; Timothy R. Walsh; Zhangqi Shen

ABSTRACT The recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route of mcr-1 among Enterobacteriaceae species in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis of Escherichia coli isolates collected in a hospital in Hangzhou, China. We found that mcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread of mcr-1. The mcr-1 gene was found on either chromosomes or plasmids, but in most of the E. coli isolates, mcr-1 was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission of mcr-1 and the coexistence of mcr-1 with other genes encoding β-lactamases and fluoroquinolone resistance in the E. coli isolates. These findings indicate that mcr-1 is heterogeneously disseminated in both commensal and pathogenic strains of E. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology of mcr-1 among hospital-associated E. coli strains. IMPORTANCE Colistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergent mcr-1 colistin resistance gene threatens the clinical utility of colistin and has gained global attention. How mcr-1 spreads in hospital settings remains unknown and was investigated by whole-genome sequencing of mcr-1-carrying Escherichia coli in this study. The findings revealed extraordinary flexibility of mcr-1 in its spread among genetically diverse E. coli hosts and plasmids, nosocomial transmission of mcr-1-carrying E. coli, and the continuous emergence of novel Inc types of plasmids carrying mcr-1 and new mcr-1 variants. Additionally, mcr-1 was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology of mcr-1 and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat. IMPORTANCE Colistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergent mcr-1 colistin resistance gene threatens the clinical utility of colistin and has gained global attention. How mcr-1 spreads in hospital settings remains unknown and was investigated by whole-genome sequencing of mcr-1-carrying Escherichia coli in this study. The findings revealed extraordinary flexibility of mcr-1 in its spread among genetically diverse E. coli hosts and plasmids, nosocomial transmission of mcr-1-carrying E. coli, and the continuous emergence of novel Inc types of plasmids carrying mcr-1 and new mcr-1 variants. Additionally, mcr-1 was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology of mcr-1 and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.

Collaboration


Dive into the Yingbo Shen's collaboration.

Top Co-Authors

Avatar

Yang Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianzhong Shen

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaolin Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhangqi Shen

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Congming Wu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenjuan Yin

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge