Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingchao Li is active.

Publication


Featured researches published by Yingchao Li.


Bioelectrochemistry | 2015

Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm

Peiyu Zhang; Dake Xu; Yingchao Li; Ke Yang; Tingyue Gu

In the microbiologically influenced corrosion (MIC) caused by sulfate reducing bacteria (SRB), iron oxidation happens outside sessile cells while the utilization of the electrons released by the oxidation process for sulfate reduction occurs in the SRB cytoplasm. Thus, cross-cell wall electron transfer is needed. It can only be achieved by electrogenic biofilms. This work hypothesized that the electron transfer is a bottleneck in MIC by SRB. To prove this, MIC tests were carried out using 304 stainless steel coupons covered with the Desulfovibrio vulgaris (ATCC 7757) biofilm in the ATCC 1249 medium. It was found that both riboflavin and flavin adenine dinucleotide (FAD), two common electron mediators that enhance electron transfer, accelerated pitting corrosion and weight loss on the coupons when 10ppm (w/w) of either of them was added to the culture medium in 7-day anaerobic lab tests. This finding has important implications in MIC forensics and biofilm synergy in MIC that causes billions of dollars of damages to the US industry each year.


Corrosion | 2004

Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel

Yingchao Li; Fuhui Wang; G. Liu

A nanocrystallized surface was fabricated on low-carbon steel by ultrasonic shot peening (USSP) technique. The grain size on the top latter of the surface narrocrystallized (SNC) low-carbon steel was about 20 nm. which increased with distance from the peening surface. The electrochemical corrosion behavior of the SNC low-carbon steel with different grain sizes was studied by electrochemical methods in 0.05 M sulfuric acid (H2SO4) + 0.05 M sodium sulfate (Na2SO4) aqueous solution. Grain sizes <35 am showed a strong effect on the electrochemical corrosion behavior. The corrosion rate of the SNC low-carbon steel increased with the decreasing of grain size. This was attributed to the increased number of the active sites caused by SNC low-carbon steel.


Bioelectrochemistry | 2016

Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria

Dake Xu; Yingchao Li; Tingyue Gu

Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation.


Frontiers in Microbiology | 2016

Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids

Yingchao Li; Ru Jia; Hussain H. Almahamedh; Dake Xu; Tingyue Gu

Microbiologically influenced corrosion (MIC) is a major problem in the oil and gas industry as well as in many other industries. Current treatment methods rely mostly on pigging and biocide dosing. Biocide resistance is a growing concern. Thus, it is desirable to use biocide enhancers to improve the efficacy of existing biocides. D-Amino acids are naturally occurring. Our previous work demonstrated that some D-amino acids are biocide enhancers. Under a biocide stress of 50 ppm (w/w) hydroxymethyl phosphonium sulfate (THPS) biocide, 1 ppm D-tyrosine and 100 ppm D-methionine used separately successfully mitigated the Desulfovibrio vulgaris biofilm on carbon steel coupons. The data reported in this work revealed that 50 ppm of an equimolar mixture of D-methionine, D-tyrosine, D-leucine, and D-tryptophan greatly enhanced 50 ppm THPS biocide treatment of two recalcitrant biofilm consortia containing sulfate reducing bacteria (SRB), nitrate reducing bacteria (NRB), and fermentative bacteria, etc., from oil-field operations. The data also indicated that individual D-amino acids were inadequate for the biofilm consortia.


World Journal of Microbiology & Biotechnology | 2017

Advances in the treatment of problematic industrial biofilms

Dongxue Xu; Ru Jia; Yingchao Li; Tingyue Gu

In nature, microorganisms tend to form biofilms that consist of extracellular polymeric substances with embedded sessile cells. Biofilms, especially mixed-culture synergistic biofilm consortia, are notoriously difficult to treat. They employ various defense mechanisms against attacks from antimicrobial agents. Problematic industrial biofilms cause biofouling as well as biocorrosion, also known as microbiologically influenced corrosion. Biocides are often used to treat biofilms together with scrubbing or pigging. Unfortunately, chemical treatments suppress vulnerable microbial species while allowing resistant species to take over. Repeated treatment cycles are typically needed in biofilm mitigation. This leads to biocide dosage escalation, causing environmental problems, higher costs and sometimes operational problems such as scale formation. New treatment methods are being developed such as enhanced biocide treatment and bacteriophage treatment. Special materials such as antibacterial stainless steels are also being created to combat biofilms. This review discussed some of the advances made in the fight against problematic industrial biofilms.


PLOS ONE | 2015

Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris

Huabing Li; Dake Xu; Yingchao Li; Hao Feng; Zhiyong Liu; Xiaogang Li; Tingyue Gu; Ke Yang

Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.


Frontiers in Microbiology | 2017

Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower

Ru Jia; Yingchao Li; Hussain H. Almahamedh; Tingyue Gu

Different species of microbes form mixed-culture biofilms in cooling water systems. They cause microbiologically influenced corrosion (MIC) and biofouling, leading to increased operational and maintenance costs. In this work, two D-amino acid mixtures were found to enhance two non-oxidizing biocides [tetrakis hydroxymethyl phosphonium sulfate (THPS) and NALCO 7330 (isothiazoline derivatives)] and one oxidizing biocide [bleach (NaClO)] against a biofilm consortium from a water cooling tower in lab tests. Fifty ppm (w/w) of an equimass mixture of D-methionine, D-leucine, D-tyrosine, D-tryptophan, D-serine, D-threonine, D-phenylalanine, and D-valine (D8) enhanced 15 ppm THPS and 15 ppm NALCO 7330 with similar efficacies achieved by the 30 ppm THPS alone treatment and the 30 ppm NALCO 7330 alone treatment, respectively in the single-batch 3-h biofilm removal test. A sequential treatment method was used to enhance bleach because D-amino acids react with bleach. After a 4-h biofilm removal test, the sequential treatment of 5 ppm bleach followed by 50 ppm D8 achieved extra 1-log reduction in sessile cell counts of acid producing bacteria, sulfate reducing bacteria, and general heterotrophic bacteria compared with the 5 ppm bleach alone treatment. The 10 ppm bleach alone treatment showed a similar efficacy with the sequential treatment of 5 ppm bleach followed by 50 ppm D8. The efficacy of D8 was found better than that of D4 (an equimass mixture of D-methionine, D-leucine, D-tyrosine, and D-tryptophan) in the enhancement of the three individual biocides against the biofilm consortium.


Corrosion Science | 2013

Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis

Dake Xu; Yingchao Li; Fengmei Song; Tingyue Gu


World Journal of Microbiology & Biotechnology | 2012

A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm.

D. Xu; Yingchao Li; Tingyue Gu


Materials and Corrosion-werkstoffe Und Korrosion | 2014

D-Methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris biofilm and biocorrosion pitting

D. Xu; Yingchao Li; Tingyue Gu

Collaboration


Dive into the Yingchao Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dake Xu

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fuhui Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ke Yang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge