Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingdong Zhu is active.

Publication


Featured researches published by Yingdong Zhu.


Journal of Agricultural and Food Chemistry | 2014

Essential Structural Requirements and Additive Effects for Flavonoids to Scavenge Methylglyoxal

Xi Shao; Huadong Chen; Yingdong Zhu; Rashin Sedighi; Chi-Tang Ho; Shengmin Sang

Reactive dicarbonyl species, such as methylglyoxal (MGO), are considered as the major precursors of advanced glycation end products (AGEs), which are believed to be one of the physiological causes of diabetes and its complications. Scavenging of reactive dicarbonyl species using naturally occurring flavonoids has been proposed as an effective way to prevent diabetic complications. To elucidate the structural requirements of flavonoids in scavenging MGO, seven flavonoids (quercetin, luteolin, epicatechin, genistein, daidzein, apigenin, and phloretin) and five sub-components of the flavonoids (gallic acid, phloroglucinol, pyrogallol, pyrocatechol, and resorcinol) were examined in this study. Our results showed the following: (1) 1,2,3-trihydroxybenzene (pyrogallol) has higher MGO scavenging activity than 1,3,5-trihydroxybenzene and 1,2- and 1,3-dihydroxybenzene, and substitution at position 5 of pyrogallol diminished the scavenging activity, indicating that position 5 is the active site of pyrogallol; (2) the A ring is the active site of flavonoids in contributing the MGO-trapping efficacy, and the hydroxyl group at C-5 on the A ring enhances the trapping efficacy; (3) the double bond between C-2 and C-3 on the C ring could facilitate the trapping efficacy; and (4) the number of hydroxyl groups on the B ring does not significantly influence the trapping efficacy. In addition, we found there is an additive effect in MGO trapping by two common flavonoids, quercetin and phloretin, indicating that flavonoid-enriched foods and beverages hold great promise to prevent the development of diabetic complications.


Drug Metabolism and Disposition | 2012

Metabolism of [6]-Shogaol in Mice and in Cancer Cells

Huadong Chen; Lishuang Lv; Dominique N. Soroka; Renaud F. Warin; Tiffany A. Parks; Yuhui Hu; Yingdong Zhu; Xiaoxin Chen; Shengmin Sang

Ginger has received extensive attention because of its antioxidant, anti-inflammatory, and antitumor activities. However, the metabolic fate of its major components is still unclear. In the present study, the metabolism of [6]-shogaol, one of the major active components in ginger, was examined for the first time in mice and in cancer cells. Thirteen metabolites were detected and identified, seven of which were purified from fecal samples collected from [6]-shogaol-treated mice. Their structures were elucidated as 1-(4′-hydroxy-3′-methoxyphenyl)-4-decen-3-ol (M6), 5-methoxy-1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-one (M7), 3′,4′-dihydroxyphenyl-decan-3-one (M8), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M9), 5-methylthio-1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-one (M10), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-one (M11), and 5-methylthio-1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M12) on the basis of detailed analysis of their 1H, 13C, and two-dimensional NMR data. The rest of the metabolites were identified as 5-cysteinyl-M6 (M1), 5-cysteinyl-[6]-shogaol (M2), 5-cysteinylglycinyl-M6 (M3), 5-N-acetylcysteinyl-M6 (M4), 5-N-acetylcysteinyl-[6]-shogaol (M5), and 5-glutathiol-[6]-shogaol (M13) by analysis of the MSn (n = 1–3) spectra and comparison to authentic standards. Among the metabolites, M1 through M5, M10, M12, and M13 were identified as the thiol conjugates of [6]-shogaol and its metabolite M6. M9 and M11 were identified as the major metabolites in four different cancer cell lines (HCT-116, HT-29, H-1299, and CL-13), and M13 was detected as a major metabolite in HCT-116 human colon cancer cells. We further showed that M9 and M11 are bioactive compounds that can inhibit cancer cell growth and induce apoptosis in human cancer cells. Our results suggest that 1) [6]-shogaol is extensively metabolized in these two models, 2) its metabolites are bioactive compounds, and 3) the mercapturic acid pathway is one of the major biotransformation pathways of [6]-shogaol.


Journal of Agricultural and Food Chemistry | 2015

Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice.

Yantao Zhao; Rashin Sedighi; Pei Wang; Huadong Chen; Yingdong Zhu; Shengmin Sang

In this study, we investigated the preventive effects of carnosic acid (CA) as a major bioactive component in rosemary extract (RE) on high-fat-diet-induced obesity and metabolic syndrome in mice. The mice were given a low-fat diet, a high-fat diet or a high-fat diet supplemented with either 0.14% or 0.28% (w/w) CA-enriched RE (containing 80% CA, RE#1L and RE#1H), or 0.5% (w/w) RE (containing 45% CA, RE#2), for a period of 16 weeks. There was the same CA content in the RE#1H and RE#2 diets and half of this amount in the RE#1L diet. The dietary RE supplementation significantly reduced body weight gain, percent of fat, plasma ALT, AST, glucose, insulin levels, liver weight, liver triglyceride, and free fatty acid levels in comparison with the mice fed with a HF diet without RE treatment. RE administration also decreased the levels of plasma and liver malondialdehyde, advanced glycation end products (AGEs), and the liver expression of receptor for AGE (RAGE) in comparison with those for mice of the HF group. Histological analyses of liver samples showed decreased lipid accumulation in hepatocytes in mice administrated with RE in comparison with that of HF-diet-fed mice. Meanwhile, RE administration enhanced fecal lipid excretion to inhibit lipid absorption and increased the liver GSH/GSSG ratio to perform antioxidant activity compared with HF group. Our results demonstrate that rosemary is a promising dietary agent to reduce the risk of obesity and metabolic syndrome.


Journal of Medicinal Chemistry | 2015

Novel Resveratrol-Based Aspirin Prodrugs: Synthesis, Metabolism, and Anticancer Activity.

Yingdong Zhu; Junsheng Fu; Kelly Shurlknight; Dominique N. Soroka; Yuhui Hu; Xiaoxin Chen; Shengmin Sang

Regular aspirin use has been convincingly shown to reduce the risk of colorectal cancer. However, long-term use of aspirin leads to gastrotoxicity. Herein, we designed and synthesized a novel class of resveratrol-based aspirin prodrugs to simultaneously release aspirin and resveratrol to attenuate the side effects caused by aspirin. Prodrug RAH exerted enhanced anticancer activities which are better than a physical mixture of aspirin and resveratrol as well as each individually. Metabolism of RAH in mice showed that the majority of RAH is decomposed to release resveratrol and aspirin or salicylic acid either in the intestine or after absorption. Mechanistic studies demonstrate RAH inhibits cell cycle arrest through downregulation of cyclins and induces apoptosis by activation of caspase-3 in cancer cells. These findings highlighted the improved anticancer properties of resveratrol-based aspirin prodrugs. RAH may represent novel and safe alternatives of aspirin for the purpose of daily use in the future.


Journal of Agricultural and Food Chemistry | 2014

Induction of lung cancer cell apoptosis through a p53 pathway by [6]-shogaol and its cysteine-conjugated metabolite M2.

Renaud F. Warin; Huadong Chen; Dominique N. Soroka; Yingdong Zhu; Shengmin Sang

Dietary chemoprevention of cancer offers the possibility to suppress or inhibit cancer growth before it develops into more advanced and lethal stages. To this end, identification of novel compounds and their mechanisms of action is constantly needed. In this study, we describe that a major component of dry ginger (Zingiber officinalis), [6]-shogaol (6S), can be quickly metabolized in A549 human lung cancer cell line. One of the resulting metabolites, the cysteine-conjugated 6S (M2), exhibits toxicity to cancer cells similar to the parent compound 6S, but is relatively less toxic toward normal cells than 6S. We further demonstrate that both compounds can cause cancer cell death by activating the mitochondrial apoptotic pathway. Our results show that the cancer cell toxicity is initiated by early modulation of glutathione (GSH) intracellular content. The subsequently generated oxidative stress activates a p53 pathway that ultimately leads to the release of mitochondria-associated apoptotic molecules such as cytochrome C, and cleaved caspases 3 and 9. In a xenograft nude mouse model, a dose of 30 mg/kg of 6S or M2 was able to significantly decrease tumor burden, without any associated toxicity to the animals. This effect was correlated with an induction of apoptosis and reduction of cell proliferation in the tumor tissues. Taken together, our results show that 6S metabolism is an integral part of its anticancer activities in vitro and in vivo. This allows us to characterize M2 as a novel compound with superior in vivo chemopreventive properties that targets similar anticancer mechanisms as 6S.


PLOS ONE | 2013

Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation.

Yingdong Zhu; Renaud F. Warin; Dominique N. Soroka; Huadong Chen; Shengmin Sang

Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4–M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC50 of 24.43 µM in HCT-116 human colon cancer cells and an IC50 of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC50 values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4–M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC50s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment.


Journal of Agricultural and Food Chemistry | 2012

Synthesis and Inhibitory Activities against Colon Cancer Cell Growth and Proteasome of Alkylresorcinols

Yingdong Zhu; Dominique N. Soroka; Shengmin Sang

We have identified alkylresorcinols (ARs) as the major active components in wheat bran against human colon cancer cell growth (HCT-116 and HT-29) using a bioassay-guided approach. To further study the structure-activity relationships, 15 ARs and their intermediates (1-15) were synthesized expediently by the modified Wittig reaction in aqueous media, and six 5-alkylpyrogallols and their analogues (16-21) were prepared by the general Grignard reaction. The synthetic AR analogues were evaluated for activities against the growth of human colon cancer cells HCT-116 and HT-29 and the chymotrypsin-like activity of the human 20S proteasome. Our results found that (1) AR C13:0 and C15:0 (13 and 14) had the greatest inhibitory effects in human colon cancer cells HCT-116 and HT-29, while decreasing or increasing the side chain lengths diminished the activities; (2) two free meta-hydroxyl groups at C-1 and C-3 on the aromatic ring of the AR analogues greatly contributed to their antitumor activity; (3) the introduction of a third hydroxyl group at C-2 (20 and 21) into the aromatic ring of the AR analogues yielded no significant enhancement in activity against HCT-116 cells and decimated the effects against HT-29 cells, but dramatically increased the activity against the chymotrypsin-like activity of the human 20S proteasome; and (4) AR C11:0 (12) was found to have the greatest effect in a series of AR C9:0-C17:0 against the chymotrypsin-like activity of the human 20S proteasome.


Journal of Nutrition | 2014

Identification and Pharmacokinetics of Novel Alkylresorcinol Metabolites in Human Urine, New Candidate Biomarkers for Whole-Grain Wheat and Rye Intake

Yingdong Zhu; Kelly Shurlknight; Xiaoxin Chen; Shengmin Sang

Biomarkers of dietary intake are prominent tools in nutritional research. The alkylresorcinol metabolites 3,5-dihydroxybenzoic acid (3,5-DHBA) and 3-(3,5-dihydroxyphenyl)propanoic acid (3,5-DHPPA) have been proposed as exposure biomarkers of whole-grain (WG) wheat and rye intake. However, the profile of alkylresorcinol metabolites is not fully understood. The aim of this study was to investigate the metabolism of alkylresorcinols in mice and in humans, while further determining urinary pharmacokinetics of the novel alkylresorcinol metabolites to explore their potential as biomarkers of WG wheat intake. Utilization of the liquid chromatography-mass spectrometry approach resulted in 10 alkylresorcinol metabolites identified in mice and in humans, including 3 phenolic acids and 7 of their phase II conjugates. Among them, 2 novel metabolites were discovered: 5-(3,5-dihydroxyphenyl)pentanoic acid (3,5-DHPPTA) and 2-(3,5-dihydroxybenzamido)acetic acid (3,5-DHBA glycine). The structures of these 2 metabolites were confirmed by comparing with authentic standards synthesized in-house. In the pharmacokinetic study, a group of 12 volunteers consumed a polyphenolic-restricted diet for 4 d before ingesting WG wheat bread containing 61 mg of alkylresorcinols. Urine samples were collected for 32 h, and alkylresorcinol metabolites were quantified with HPLC-coulometric electrode array detection. The mean urinary excretion rates and mean apparent half-life of 3,5-DHPPTA, 3,5-DHBA glycine, 3,5-DHBA, and 3,5-DHPPA at each time point were determined. Our results suggest that 3,5-DHPPTA and 3,5-DHBA glycine may be used in combination with 3,5-DHBA and 3,5-DHPPA as potential biomarkers to increase the accuracy of recording WG wheat and rye intake in epidemiologic studies. Further validation of 3,5-DHPPTA and 3,5-DHBA glycine as potential biomarkers is warranted.


Chemical Research in Toxicology | 2015

Bioactive ginger constituents alleviate protein glycation by trapping methylglyoxal.

Yingdong Zhu; Yantao Zhao; Pei Wang; Mohamed Ahmedna; Shengmin Sang

Considerable evidence suggests that long-term pathological diabetes is a result of the accumulation of tissue macromolecules that have been progressively modified by nonenzymatic glycation of protein. Methylglyoxal (MGO) is a highly reactive endogenous dicarbonyl metabolite derived from multiple sources such as glucose and lipids and is thought to contribute greatly to protein glycation and the formation of advanced glycation end products (AGEs). In this study, we demonstrated for the first time that both [6]-shogaol (6S) and [6]-gingerol (6G), the major active components in ginger, markedly trapped MGO in vitro and consequently formed mono-MGO adducts, 6S-MGO and 6G-MGO, which were purified from the respective chemical reaction and characterized as novel compounds by NMR experiments and LC-MS/MS approaches. We revealed that the α-carbon of the carbonyl group in the side chain of 6S or 6G is the major active site for trapping MGO. We also demonstrated that 6S and 6G could effectively inhibit the formation of MGO-induced AGEs via trapping MGO in a time-dependent manner in the human serum albumin (HSA)-MGO system. Mono-MGO adducts, 6S-MGO and 6G-MGO, were determined to be the major conjugates in 6S- and 6G-treated HSA-MGO assays, respectively, using LC-ESI-MS techniques. These findings showed the potential effects of 6S and 6G on the prevention of protein glycation, suggesting regular consumption of ginger root extract may attenuate the progression of MGO-associated diabetic complications in patients.


Journal of Pharmaceutical and Biomedical Analysis | 2016

Metabolism of dictamnine in liver microsomes from mouse, rat, dog, monkey, and human

Pei Wang; Yunli Zhao; Yingdong Zhu; Jianbo Sun; Aaron Yerke; Shengmin Sang; Zhiguo Yu

Dictamnine, a furoquinoline alkaloid isolated from the root bark of Dictamnus dasycarpus Turcz. (Rutaceae), is reported to have a wide range of pharmacological activities. In this study, the in vitro metabolic profiles of dictamnine in mouse, rat, dog, monkey, and human liver microsomes were investigated and compared. Dictamnine was incubated with liver microsomes in the presence of an NADPH-regenerating system, resulting in the formation of eight metabolites (M1-M8). M1 is an O-desmethyl metabolite. M5 and M6 are formed by a mono-hydroxylation of the benzene ring of dictamnine. M8 was tentatively identified as an N-oxide metabolite. The predominant metabolic pathway of dictamnine occurs through the epoxidation of the 2,3-olefinic to yield a 2,3-epoxide metabolite (M7), followed by the ring of the epoxide opening to give M4. Likewise, cleavage of the furan ring forms M2 and M3. Slight differences were observed in the in vitro metabolic profiles of dictamnine among the five species tested. A chemical inhibition study with a broad and five specific CYP450 inhibitors revealed that most of the dictamnine metabolites in liver microsomes are mediated by CYP450, with CYP3A4 as the predominant enzyme involved in the formation of M7, the major metabolite. These findings provide vital information to better understand the metabolic processes of dictamnine among various species.

Collaboration


Dive into the Yingdong Zhu's collaboration.

Top Co-Authors

Avatar

Shengmin Sang

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Pei Wang

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Dominique N. Soroka

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Huadong Chen

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Yantao Zhao

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Junsheng Fu

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Kelly Shurlknight

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Xiaoxin Chen

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Aaron Yerke

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Renaud F. Warin

North Carolina Agricultural and Technical State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge