Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingfan Cai is active.

Publication


Featured researches published by Yingfan Cai.


BMC Genomics | 2013

Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing

Quan Sun; Huaizhong Jiang; Xiaoyan Zhu; Weina Wang; Xiaohong He; Yuzhen Shi; Youlu Yuan; Xiongming Du; Yingfan Cai

BackgroundCotton Verticillium wilt is a serious soil-borne vascular disease that causes great economic loss each year. However, due to the lack of resistant varieties of upland cotton, the molecular mechanisms of resistance to this disease, especially to the pathogen Verticillium dahliae, remain unclear.ResultsWe used the RNA-seq method to research the molecular mechanisms of cotton defence responses to different races of Verticillium dahliae by comparing infected sea-island cotton and upland cotton. A total of 77,212 unigenes were obtained, and the unigenes were subjected to BLAST searching and annotated using the GO and KO databases. Six sets of digital gene expression data were mapped to the reference transcriptome. The gene expression profiles of cotton infected with Verticillium dahliae were compared to those of uninfected cotton; 44 differentially expressed genes were identified. Regarding genes involved in the phenylalanine metabolism pathway, the hydroxycinnamoyl transferase gene (HCT) was upregulated in upland cotton whereas PAL, 4CL, CAD, CCoAOMT, and COMT were upregulated in sea-island cotton. Almost no differentially expressed genes in this pathway were identified in sea-island cotton and upland cotton when they were infected with V. dahliae V991 and V. dahliae D07038, respectively.ConclusionsOur comprehensive gene expression data at the transcription level will help elucidate the molecular mechanisms of the cotton defence response to V. dahliae. By identifying the genes involved in the defence response of each type of cotton to V. dahliae, our data not only provide novel molecular information for researchers, but also help accelerate research on genes involved in defences in cotton.


SpringerPlus | 2014

Identification of novel microRNAs in the Verticillium wilt-resistant upland cotton variety KV-1 by high-throughput sequencing

Xiaohong He; Quan Sun; Huaizhong Jiang; Xiaoyan Zhu; Jianchuan Mo; Lu Long; Liuxin Xiang; Yongfang Xie; Yuzhen Shi; Youlu Yuan; Yingfan Cai

Plant microRNAs (miRNAs) play essential roles in the post-transcriptional regulation of gene expression during development, flowering, plant growth, metabolism, and stress responses. Verticillium wilt is one of the vascular disease in plants, which is caused by the Verticillium dahlia and leads to yellowing, wilting, lodging, damage to the vascular tissue, and death in cotton plants. Upland cotton varieties KV-1 have shown resistance to Verticillium wilt in multiple levels. However, the knowledge regarding the post-transcriptional regulation of the resistance is limited. Here two novel small RNA (sRNA) libraries were constructed from the seedlings of upland cotton variety KV-1, which is highly resistant to Verticillium wilts and inoculated with the V991 and D07038 Verticillium dahliae (V. dahliae) of different virulence strains. Thirty-seven novel miRNAs were identified after sequencing these two libraries by the Illumina Solexa system. According to sequence homology analysis, potential target genes of these miRNAs were predicted. With no more than three sequence mismatches between the novel miRNAs and the potential target mRNAs, we predicted 49 target mRNAs for 24 of the novel miRNAs.These target mRNAs corresponded to genes were found to be involved in plant–pathogen interactions, endocytosis, the mitogen-activated protein kinase (MAPK) signaling pathway, and the biosynthesis of isoquinoline alkaloid, terpenoid backbone, primary bile acid and secondary metabolites. Our results showed that some of these miRNAs and their relative gene are involved in resistance to Verticillium wilts. The identification and characterization of miRNAs from upland cotton could help further studies on the miRNA regulatory mechanisms of resistance to Verticillium wilt.


Archive | 2011

Glandless Seed and Glanded Plant Research in Cotton

Yingfan Cai; Yongfang Xie; Jinggao Liu

Recently the world has been entangled by insufficient food such as the lack of rice which threatens the safety of world food and affect sustainable development of the world economy, resulting in rising of food price. To address this issue, cotton appears as a possible source of both fiber and food. The research in recent years indeed showed bright prospects for this expectation. However, gossypol stored in the glands of cotton is toxic to nonruminant animals and humans, which wastes large amounts of cottonseed protein that could potentially provide the annual protein requirements for half a billion people. Gossypium species are characterized by their lysigenous glands containing terpenoid aldehydes, important secondary phytoalexins consisting mainly of gossypol, which constitute one of the important plant’s defense system against pests and diseases. The best approach to address this issue is to create glandless seed and glanded plant cotton. A breakthrough in this field would realise the fulfilment of making cotton both a fiber and a food crop, which would be a feat of great magnitude for sustainable development of agriculture. Research on the relationship between glands and their secondary inclusions at the molecular level would be one approach for genetic engineering to control the glands and gossypol content. In this article, we review recent progress on glands and gossypol content for diverse gland types in Gossypium species, inheritance of glands and gossypol content, traditional breeding of glandless seeds and glanded plant cotton, the terpenoid aldehyde biosynthesis pathway, molecular cloning of the related genes, the strategy for genetic engineering, and future prospects.


Molecular Biology Reports | 2010

Gene expression profiling during gland morphogenesis of a mutant and a glandless upland cotton

Quan Sun; Yingfan Cai; Yongfang Xie; Jianchuan Mo; Youlu Yuan; Yuzhen Shi; Shengwei Li; Huaizhong Jiang; Zheng Pan; Yunling Gao; Min Chen; Xiaohong He

To identify genes involved in pigment gland morphogenesis in cotton, gene expression was profiled using genechip (Affymetrix) during pigment gland morphogenesis in cotton variety Xiangmian-18, which has glandless seeds but glanded plants, and a glandless line, N5. The results showed that 303 genes were differentially expressed by a factor greater than two during gland morphogenesis; 59% (180) of these genes shared similarity with known genes in GenBank. These genes play roles in defense response, response to oxidative stress, peroxidase activity, and other metabolic pathways. KOBAS (KEGG Orthology-Based Annotation System) indicate that these genes are involved in 68 biochemical pathways. These findings suggest that the related defense response, gossypol biosynthesis pathway and other complex regulation may be associated with pigment gland morphogenesis in cotton. The results may provide a basis for further study and serve as a guide for related research.


G3: Genes, Genomes, Genetics | 2016

Characterization, Expression, and Functional Analysis of a Novel NAC Gene Associated with Resistance to Verticillium Wilt and Abiotic Stress in Cotton.

Weina Wang; Youlu Yuan; Can Yang; Shuaipeng Geng; Quan Sun; Lu Long; Chaowei Cai; Zongyan Chu; Xin Liu; Guanghao Wang; Xiongming Du; Chen Miao; Xiao Zhang; Yingfan Cai

Elucidating the mechanism of resistance to biotic and abiotic stress is of great importance in cotton. In this study, a gene containing the NAC domain, designated GbNAC1, was identified from Gossypium barbadense L. Homologous sequence alignment indicated that GbNAC1 belongs to the TERN subgroup. GbNAC1 protein localized to the cell nucleus. GbNAC1 was expressed in roots, stems, and leaves, and was especially highly expressed in vascular bundles. Functional analysis showed that cotton resistance to Verticillium wilt was reduced when the GbNAC1 gene was silenced using the virus-induced gene silencing (VIGS) method. GbNAC1-overexpressing Arabidopsis showed enhanced resistance to Verticillium dahliae compared to wild-type. Thus, GbNAC1 is involved in the positive regulation of resistance to Verticillium wilt. In addition, analysis of GbNAC1-overexpressing Arabidopsis under different stress treatments indicated that it is involved in plant growth, development, and response to various abiotic stresses (ABA, mannitol, and NaCl). This suggests that GbNAC1 plays an important role in resistance to biotic and abiotic stresses in cotton. This study provides a foundation for further study of the function of NAC genes in cotton and other plants.


Biologia | 2010

Molecular phylogeny of Ranunculaceae based on rbc L sequences

Yingfan Cai; Sheng-wei Li; Min Chen; Ming-feng Jiang; Yi Liu; Yongfang Xie; Quan Sun; Huaizhong Jiang; Neng-wen Yin; Ling Wang; Rui Zhang; Cheng-lin Huang; Kairong Lei

A phylogenetic tree was constructed by sequencing rbcL genes of 33 species representing 19 genera of Ranunculaceae, and three related species, Mahonia bealei, Mahonia fortunei and Nandina domestica. The results showed that the rbcL sequences of these Ranunculaceae range from 1,346 bp to 1,393 bp. The results based on the phylogenetic tree indicated that Caltha and Trollius should not be put in the same tribe, and a close relationship between Adonis and Trollius is supported by our research, while Aquilegia should be in Thalictroideae. In combination with the morphological and chemical evidence, the generic classification of Ranunculaceae should be revised into five subfamilies: Hydrastidoideae, Coptidoideae, Helleboroideae, Thalictroideae and Ranunculoideae. We demonstrate that the rbcL gene is of great value for investigating generic to subfamilial relationships in Ranunculaceae.


Scientific Reports | 2016

To Be a Flower or Fruiting Branch: Insights Revealed by mRNA and Small RNA Transcriptomes from Different Cotton Developmental Stages

Quan Sun; Xiongming Du; Chaowei Cai; Lu Long; Sai Zhang; Peng Qiao; Weina Wang; Kexue Zhou; Guanghao Wang; Xin Liu; Hui Zhang; Shuaipeng Geng; Can Yang; Wei Gao; Jianchuan Mo; Chen Miao; Chunpeng Song; Yingfan Cai

The architecture of the cotton plant, including fruit branch formation and flowering pattern, is the most important characteristic that directly influences light exploitation, yield and cost of planting. Nulliplex branch is a useful phenotype to study cotton architecture. We used RNA sequencing to obtain mRNA and miRNA profiles from nulliplex- and normal-branch cotton at three developmental stages. The differentially expressed genes (DEGs) and miRNAs were identified that preferentially/specifically expressed in the pre-squaring stage, which is a key stage controlling the transition from vegetative to reproductive growth. The DEGs identified were primarily enriched in RNA, protein, and signalling categories in Gossypium barbadense and Gossypium hirsutum. Interestingly, during the pre-squaring stage, the DEGs were predominantly enriched in transcription factors in both G. barbadense and G. hirsutum, and these transcription factors were mainly involved in branching and flowering. Related miRNAs were also identified. The results showed that fruit branching in cotton is controlled by molecular pathways similar to those in Arabidopsis and that multiple regulated pathways may affect the development of floral buds. Our study showed that the development of fruit branches is closely related to flowering induction and provides insight into the molecular mechanisms of branch and flower development in cotton.


Scientific Reports | 2017

Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes

Quan Sun; Guanghao Wang; Xiao Zhang; Xiangrui Zhang; Peng Qiao; Lu Long; Youlu Yuan; Yingfan Cai

TIFY proteins are plant-specific proteins containing TIFY, JAZ, PPD and ZML subfamilies. A total of 50, 54 and 28 members of the TIFY gene family in three cultivated cotton species—Gossypium hirsutum, Gossypium barbadense and Gossypium arboretum—were identified, respectively. The results of phylogenetic analysis showed that these TIFY genes were divided into eight clusters. The different clusters of gene family members often have similar gene structures, including the number of exons. The results of quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that different JAZ genes displayed distinct expression patterns in the leaves of upland cotton under treatment with Gibberellin (GA), methyl jasmonate (MeJA), Jasmonic acid (JA) and abscisic acid (ABA). Different groups of JAZ genes exhibited different expression patterns in cotton leaves infected with Verticillium dahliae. The results of the comparative analysis of TIFY genes in the three cultivated species will be useful for understanding the involvement of these genes in development and stress resistance in cotton.


BMC Genomics | 2017

Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species

Liuxin Xiang; Jinggao Liu; Chaofeng Wu; Yushan Deng; Chaowei Cai; Xiao Zhang; Yingfan Cai

BackgroundNucleotide binding site (NBS) genes encode a large family of disease resistance (R) proteins in plants. The availability of genomic data of the two diploid cotton species, Gossypium arboreum and Gossypium raimondii, and the two allotetraploid cotton species, Gossypium hirsutum (TM-1) and Gossypium barbadense allow for a more comprehensive and systematic comparative study of NBS-encoding genes to elucidate the mechanisms of cotton disease resistance.ResultsBased on the genome assembly data, 246, 365, 588 and 682 NBS-encoding genes were identified in G. arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. The distribution of NBS-encoding genes among the chromosomes was nonrandom and uneven, and was tended to form clusters. Gene structure analysis showed that G. arboreum and G. hirsutum possessed a greater proportion of CN, CNL, and N genes and a lower proportion of NL, TN and TNL genes compared to that of G. raimondii and G. barbadense, while the percentages of RN and RNL genes remained relatively unchanged. The percentage changes among them were largest for TNL genes, about 7 times. Exon statistics showed that the average exon numbers per NBS gene in G. raimondii and G. barbadense were all greater than that in G. arboretum and G. hirsutum. Phylogenetic analysis revealed that the TIR-NBS genes of G. barbadense were closely related with that of G. raimondii. Sequence similarity analysis showed that diploid cotton G. arboreum possessed a larger proportion of NBS-encoding genes similar to that of allotetraploid cotton G. hirsutum, while diploid G. raimondii possessed a larger proportion of NBS-encoding genes similar to that of allotetraploid cotton G. barbadense. The synteny analysis showed that more NBS genes in G. raimondii and G. arboreum were syntenic with that in G. barbadense and G. hirsutum, respectively.ConclusionsThe structural architectures, amino acid sequence similarities and synteny of NBS-encoding genes between G. arboreum and G. hirsutum, and between G. raimondii and G. barbadense were the highest among comparisons between the diploid and allotetraploid genomes, indicating that G. hirsutum inherited more NBS-encoding genes from G. arboreum, while G. barbadense inherited more NBS-encoding genes from G. raimondii. This asymmetric evolution of NBS-encoding genes may help to explain why G. raimondii and G. barbadense are more resistant to Verticillium wilt, whereas G. arboreum and G. hirsutum are more susceptible to Verticillium wilt. The disease resistances of the allotetraploid cotton were related to their NBS-encoding genes especially in regard from which diploid progenitor they were derived, and the TNL genes may have a significant role in disease resistance to Verticillium wilt in G. raimondii and G. barbadense.


Journal of Plant Biology | 2013

Characterization of the first tuber mustard calmodulin-like gene, BjAAR1, and its functions in responses to abiotic stress and abscisic acid in Arabidopsis

Liuxin Xiang; Yuxian Xia; Yingfan Cai; Jijun Liu; Xiaohong He; Quan Sun; Xiaoyan Wang; Yuyin Fu; Yonghong Fan; Daiwen Dong; Guanfan Zhou; Jinjuan Shen; Yihua Liu

The first tuber mustard calmodulin-like (CML) gene BjAAR1 (Brassica juncea var. tumida Tsen et Lee Abiotic stress and Abscisic acid (ABA) Responsive gene 1) was cloned and characterized. The protein encoded by BjAAR1 contains four predicted Ca2+ binding sites (EF-hand motif) and its recombinant protein can bind Ca2+ in vitro. qRT-PCR showed that the expression level of BjAAR1 was rather high in non-swollen stem of tuber mustard and largely reduced in swollen stem. Expression of BjAAR1 enhanced ABA- and stress-induced gene expression in Arabidopsis (Arabidopsis thaliana). Transgenic plants also exhibited hypersensitivity to NaCl, mannitol, and ABA during the seed germination and post-germination stages. ABA biosynthesis inhibitor, norflurazon (NF), rescued hypersensitivity phenotype of transgenic plants to NaCl and mannitol, indicating that BjAAR1 functions in multiple abiotic stresses response through ABA-dependent process.

Collaboration


Dive into the Yingfan Cai's collaboration.

Top Co-Authors

Avatar

Quan Sun

Chongqing University of Posts and Telecommunications

View shared research outputs
Top Co-Authors

Avatar

Huaizhong Jiang

Chongqing University of Posts and Telecommunications

View shared research outputs
Top Co-Authors

Avatar

Xiaohong He

Chongqing University of Posts and Telecommunications

View shared research outputs
Top Co-Authors

Avatar

Jianchuan Mo

Chongqing University of Posts and Telecommunications

View shared research outputs
Top Co-Authors

Avatar

Yongfang Xie

Chongqing University of Posts and Telecommunications

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Chen

Southwest University for Nationalities

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge