Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingkao Hu is active.

Publication


Featured researches published by Yingkao Hu.


Phytochemistry | 2011

Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE)

Liyan Gao; Xing Yan; X. Li; Guangfang Guo; Yingkao Hu; Wujun Ma; Yueming Yan

Salt stress is a major abiotic stress that limits agricultural productivity in many regions of the world. To understand the molecular basis of the salt stress response in wheat (Triticum aestivum L.), a proteomic approach was used to identify the salt stress-responsive proteins in an elite Chinese wheat cultivar, Zhengmai 9023, which exhibits a high yield, superior gluten quality and better biotic resistance. Three-week-old seedlings were treated with NaCl of four different concentrations (1.0%, 1.5%, 2.0%, and 2.5%). The total proteins from the leaves of untreated and NaCl-treated plants were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2358 protein spots were detected on the gels, among which 125 spots showed a significant change in protein abundance, and 83 differentially expressed spots were localised on preparative gels. Using Q-TOF mass spectrometry, 52 salt-responsive spots were identified, which were classified into six functional categories that included transport-associated proteins, detoxifying enzymes, ATP synthase, carbon metabolism, protein folding, and proteins with unknown biological functions. Of the 52 differentially expressed proteins, 26 were up-regulated, 21 were down-regulated, and five spots showed multi-expression patterns. In particular, some important proteins for salt tolerance were found to be up-regulated in Zhengmai 9023 under salt stress, such as H(+)-ATPases, glutathione S-transferase, ferritin and triosephosphate isomerase.


BMC Plant Biology | 2013

The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups

Guangjun Yin; Hongliang Xu; Shuyang Xiao; Yajuan Qin; Yaxuan Li; Yueming Yan; Yingkao Hu

BackgroundWRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species.ResultsWe identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean.ConclusionsIn this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean.


BMC Plant Biology | 2012

Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.)

Guangfang Guo; Dongwen Lv; Xing Yan; Saminathan Subburaj; Pei Ge; Xiaohui Li; Yingkao Hu; Yueming Yan

BackgroundThe analyses of protein synthesis, accumulation and regulation during grain development in wheat are more complex because of its larger genome size compared to model plants such as Arabidopsis and rice. In this study, grains from two wheat cultivars Jimai 20 and Zhoumai 16 with different gluten quality properties were harvested at five development stages, and were used to displayed variable expression patterns of grain proteins.ResultsProteome characterization during grain development in Chinese bread wheat cultivars Jimai 20 and Zhoumai 16 with different quality properties was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 117 differentially accumulated protein spots representing 82 unique proteins and five main expression patterns enabled a chronological description of wheat grain formation. Significant proteome expression differences between the two cultivars were found; these included 14 protein spots that accumulated in both cultivars but with different patterns and 27 cultivar-different spots. Among the cultivar-different protein spots, 14 accumulated in higher abundance in Jimai 20 than in Zhoumai 16, and included NAD-dependent isocitrate dehydrogenase, triticin precursor, LMW-s glutenin subunit and replication factor C-like protein. These proteins are likely to be associated with superior gluten quality. In addition, some proteins such as class II chitinase and peroxidase 1 with isoforms in developing grains were shown to be phosphorylated by Pro-Q Diamond staining and phosphorprotein site prediction. Phosphorylation could have important roles in wheat grain development. qRT-PCR analysis demonstrated that transcriptional and translational expression patterns of many genes were significantly different.ConclusionsWheat grain proteins displayed variable expression patterns at different developmental stages and a considerable number of protein spots showed differential accumulation between two cultivars. Differences in seed storage proteins were considered to be related to different quality performance of the flour from these wheat cultivars. Some proteins with isoforms were phosphorylated, and this may reflect their importance in grain development. Our results provide new insights into proteome characterization during grain development in different wheat genotypes.


BMC Plant Biology | 2010

Genome-scale identification of Soybean BURP domain-containing genes and their expression under stress treatments

Hongliang Xu; Yaxuan Li; Yueming Yan; Ke Wang; Ya Gao; Yingkao Hu

BackgroundMultiple proteins containing BURP domain have been identified in many different plant species, but not in any other organisms. To date, the molecular function of the BURP domain is still unknown, and no systematic analysis and expression profiling of the gene family in soybean (Glycine max) has been reported.ResultsIn this study, multiple bioinformatics approaches were employed to identify all the members of BURP family genes in soybean. A total of 23 BURP gene types were identified. These genes had diverse structures and were distributed on chromosome 1, 2, 4, 6, 7, 8, 11, 12, 13, 14, and 18. Phylogenetic analysis suggested that these BURP family genes could be classified into 5 subfamilies, and one of which defines a new subfamily, BURPV. Quantitative real-time PCR (qRT-PCR) analysis of transcript levels showed that 15 of the 23 genes had no expression specificity; 7 of them were specifically expressed in some of the tissues; and one of them was not expressed in any of the tissues or organs studied. The results of stress treatments showed that 17 of the 23 identified BURP family genes responded to at least one of the three stress treatments; 6 of them were not influenced by stress treatments even though a stress related cis-element was identified in the promoter region. No stress related cis-elements were found in promoter region of any BURPV member. However, qRT-PCR results indicated that all members from BURPV responded to at least one of the three stress treatments. More significantly, the members from the RD22-like subfamily showed no tissue-specific expression and they all responded to each of the three stress treatments.ConclusionsWe have identified and classified all the BURP domain-containing genes in soybean. Their expression patterns in different tissues and under different stress treatments were detected using qRT-PCR. 15 out of 23 BURP genes in soybean had no tissue-specific expression, while 17 out of them were stress-responsive. The data provided an insight into the evolution of the gene family and suggested that many BURP family genes may be important for plants responding to stress conditions.


BMC Plant Biology | 2014

Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20

Yonglong Yu; Guangfang Guo; Dongwen Lv; Yingkao Hu; Jiarui Li; Xiaohui Li; Yueming Yan

BackgroundWheat seed germination directly affects wheat yield and quality. Although transcriptome and proteome analyses during seed germination have been reported in some crop plant species, dynamic transcriptome characterization during wheat seed germination has not been conducted. We performed the first comprehensive dynamic transcriptome analysis during different seed germination stages of elite Chinese bread wheat cultivar Jimai 20 using the Affymetrix Wheat Genome Array.ResultsA total of 61,703 probe sets representing 51,411 transcripts were identified during the five seed germination stages of Jimai 20, of which 2,825 differential expression probe sets corresponding to 2,646 transcripts with different functions were declared by ANOVA and a randomized variance model. The seed germination process included a rapid initial uptake phase (0–12 hours after imbibition [HAI]), a plateau phase (12–24 HAI), and a further water uptake phase (24–48 HAI), corresponding to switches from the degradation of small-molecule sucrose to the metabolism of three major nutrients and to photosynthesis. Hierarchical cluster and MapMan analyses revealed changes in several significant metabolism pathways during seed germination as well as related functional groups. The signal pathway networks constructed with KEGG showed three important genes encoding the phosphofructokinase family protein, with fructose-1, 6-bisphosphatase, and UTP-glucose-1-phosphate uridylyltransferase located at the center, indicating their pivotal roles in the glycolytic pathway, gluconeogenesis, and glycogenesis, respectively. Several significant pathways were selected to establish a metabolic pathway network according to their degree value, which allowed us to find the pathways vital to seed germination. Furthermore, 51 genes involved in transport, signaling pathway, development, lipid metabolism, defense response, nitrogen metabolism, and transcription regulation were analyzed by gene co-expression network with a k-core algorithm to determine which play pivotal roles in germination. Twenty-three meaningful genes were found, and quantitative RT-PCR analysis validated the expression patterns of 12 significant genes.ConclusionsWheat seed germination comprises three distinct phases and includes complicated regulation networks involving a large number of genes. These genes belong to many functional groups, and their co-regulations guarantee regular germination. Our results provide new insight into metabolic changes during seed germination and interactions between some significant genes.


BMC Plant Biology | 2014

Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies

Yan Zhu; Ningning Wu; Wanlu Song; Guangjun Yin; Yajuan Qin; Yueming Yan; Yingkao Hu

BackgroundExpansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited.ResultsA total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies.ConclusionThis study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have influenced the evolution of the four subfamilies. In conclusion, the results of this study contribute novel detailed information about the molecular evolution of the expansin gene superfamily in soybean.


Cereal Chemistry | 2004

Rapid Identification of HMW Glutenin Subunits from Different Hexaploid Wheat Species by Acidic Capillary Electrophoresis

Yueming Yan; Yi Jiang; Minmin Sun; Jianzhong Yu; Yinghua Xiao; Jigang Zheng; Yingkao Hu; Minhua Cai; Yaxuan Li; S. L. K. Hsam; F. J. Zeller

ABSTRACT High molecular weight glutenin subunits (HMW-GS) from three hexaploid wheat species (AABBDD, 2n=6x=42, Triticum aestivum L., T. spelta L., and T. compactum L.) were separated and identified by acidic capillary electrophoresis (A-CE) with phosphate-glycine buffer (pH 2.5) in uncoated fused-silica capillaries (50 μm, i.d. × 25.5 cm) at 12.5 kV and 40°C. The rapid separations (<15 min) of HMW-GS with good repeatability (RSD < 2%) were obtained using a fast capillary rising protocol. All 17 HMW-GS analyzed could be well separated and their relative migration orders were ranked. In particular, the good quality subunit pair 5+10 could be differentiated from poor quality subunit pair 2+12. In addition, the other three allelic pairs of 13+16, 17+18, and 7+8 subunits that were considered to have positive effects on dough properties, as well as three pairs of novel subunits 13+22*, 13*+19*, and 6.1+22.1 detected from spelt and club wheat, can also be readily separated and identified. An additional protein ...


PLOS ONE | 2014

Molecular Characterization and Expression Profiling of the Protein Disulfide Isomerase Gene Family in Brachypodium distachyon L

Chong Zhu; Nana Luo; Miao He; Guanxing Chen; Jiantang Zhu; Guangjun Yin; Xiaohui Li; Yingkao Hu; Jiarui Li; Yueming Yan

Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene family.


Frontiers in Plant Science | 2016

Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses

Hui Cao; Yuxing Xu; Linlin Yuan; Yanwei Bian; Lihui Wang; Shoumin Zhen; Yingkao Hu; Yueming Yan

The 14-3-3 gene family identified in all eukaryotic organisms is involved in a wide range of biological processes, particularly in resistance to various abiotic stresses. Here, we performed the first comprehensive study on the molecular characterization, phylogenetics, and responses to various abiotic stresses of the 14-3-3 gene family in Brachypodium distachyon L. A total of seven 14-3-3 genes from B. distachyon and 120 from five main lineages among 12 species were identified, which were divided into five well-conserved subfamilies. The molecular structure analysis showed that the plant 14-3-3 gene family is highly evolutionarily conserved, although certain divergence had occurred in different subfamilies. The duplication event investigation revealed that segmental duplication seemed to be the predominant form by which the 14-3-3 gene family had expanded. Moreover, seven critical amino acids were detected, which may contribute to functional divergence. Expression profiling analysis showed that BdGF14 genes were abundantly expressed in the roots, but showed low expression in the meristems. All seven BdGF14 genes showed significant expression changes under various abiotic stresses, including heavy metal, phytohormone, osmotic, and temperature stresses, which might play important roles in responses to multiple abiotic stresses mainly through participating in ABA-dependent signaling and reactive oxygen species-mediated MAPK cascade signaling pathways. In particular, BdGF14 genes generally showed upregulated expression in response to multiple stresses of high temperature, heavy metal, abscisic acid (ABA), and salicylic acid (SA), but downregulated expression under H2O2, NaCl, and polyethylene glycol (PEG) stresses. Meanwhile, dynamic transcriptional expression analysis of BdGF14 genes under longer treatments with heavy metals (Cd2+, Cr3+, Cu2+, and Zn2+) and phytohormone (ABA) and recovery revealed two main expression trends in both roots and leaves: up-down and up-down-up expression from stress treatments to recovery. This study provides new insights into the structures and functions of plant 14-3-3 genes.


BMC Plant Biology | 2014

Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat ( Triticum aestivum L.)

Jiantang Zhu; Pengchao Hao; Guanxing Chen; Caixia Han; Xiaohui Li; F. J. Zeller; S. L. K. Hsam; Yingkao Hu; Yueming Yan

BackgroundThe endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress.ResultsSequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that TaBiP (Triticum aestivum BiP) expression was not organ-specific, but was predominantly localized to seed endosperm. Furthermore, immunolocalization confirmed that TaBiP was primarily located within the protein bodies (PBs) in wheat endosperm. Three TaBiP genes exhibited significantly down-regulated expression following high molecular weight-glutenin subunit (HMW-GS) silencing. Drought stress induced significantly up-regulated expression of TaBiPs in wheat roots, leaves, and developing grains.ConclusionsThe high conservation of BiP sequences suggests that BiP plays the same role, or has common mechanisms, in the folding and assembly of nascent polypeptides and protein synthesis across species. The expression of TaBiPs in different wheat tissue and under abiotic stress indicated that TaBiP is most abundant in tissues with high secretory activity and with high proportions of cells undergoing division, and that the expression level of BiP is associated with the subunit types of HMW-GS and synthesis. The expression of TaBiPs is developmentally regulated during seed development and early seedling growth, and under various abiotic stresses.

Collaboration


Dive into the Yingkao Hu's collaboration.

Top Co-Authors

Avatar

Yueming Yan

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Yaxuan Li

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Minhua Cai

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaohui Li

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Hongliang Xu

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Guangjun Yin

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Yan Zhu

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Guanxing Chen

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Lihui Wang

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Wanlu Song

Capital Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge