Yinglan Zhao
Sichuan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yinglan Zhao.
International Journal of Pharmaceutics | 2010
XiuLing Zheng; Bing Kan; Maling Gou; ShaoZhi Fu; Juan Zhang; Ke Men; Lijuan Chen; Feng Luo; Yinglan Zhao; Xia Zhao; Yuquan Wei; Zhiyong Qian
Honokiol (HK) shows potential application in cancer treatment, but its poor water solubility restricts clinical application greatly. In this paper, monomethoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) was synthesized by ring-opening polymerization and processed into nanoparticle for honokiol delivery. Chemical structure of the synthesized polymer was confirmed by (1)H NMR, and its molecular weight was determined by gel permeation chromatography (GPC). Honokiol loaded MPEG-PLA nanoparticles were prepared by solvent extract method. And particle size distribution, morphology, drug loading, drug release profile and anticancer activity in vitro were studied in detail. The described honokiol loaded MPEG-PLA nanoparticles in this paper might be a novel formulation for honokiol delivery.
Journal of Molecular Medicine | 2011
Jun Ge; Ben-Xu Tan; Ye Chen; Li Yang; Xing-Chen Peng; Hong-Ze Li; Hong-Jun Lin; Yu Zhao; Meng Wei; Ke Cheng; Long-Hao Li; Hang Dong; Feng Gao; Jian-Ping He; Yang Wu; Meng Qiu; Yinglan Zhao; Jing-Mei Su; Jian-Mei Hou; Ji-Yan Liu
Sunitinib, a novel oral multi-targeted tyrosine kinase inhibitor for patients with metastatic renal cell carcinoma (mRCC) and advanced gastrointestinal stromal tumor, has a good prospect for clinical application and is being investigated for the potential therapy of other tumors. We observed the phenomenon that drinking tea interfered with symptom control in an mRCC patient treated with sunitinib and speculated that green tea or its components might interact with sunitinib. This study was performed to investigate whether epigallocatechin-3-gallate (EGCG), the major constituent of green tea, interacted with sunitinib. The interaction between EGCG and sunitinib was examined in vitro and in vivo. 1H nuclear magnetic resonance (1H-NMR) spectroscopy and mass spectrometry (MS) were used to analyze the interaction between these two molecules and whether a new compound was formed. Solutions of sunitinib and EGCG were intragastrically administered to rats to investigate whether the plasma concentrations of sunitinib were affected by EGCG. In this study, we noticed that a precipitate was formed when the solutions of sunitinib and EGCG were mixed under both neutral and acidic conditions. 1H-NMR spectra indicated an interaction between EGCG and sunitinib, but no new compound was observed by MS. Sticky semisolid contents were found in the stomachs of sunitinib and EGCG co-administrated mice. The
Cell Research | 2015
Xiawei Wei; Bin Shao; Zhiyao He; Tinghong Ye; Min Luo; Yaxiong Sang; Xiao Liang; Wei Wang; Shun-Tao Luo; Sheng-Yong Yang; Shuang Zhang; Changyang Gong; Maling Gou; Hongxing Deng; Yinglan Zhao; Hanshuo Yang; Senyi Deng; Chengjian Zhao; Li Yang; Zhiyong Qian; Jiong Li; Xun Sun; Jiahuai Han; Chengyu Jiang; Min Wu; Zhirong Zhang
Biomedicine & Pharmacotherapy | 2010
Pei-Du Jiang; Yinglan Zhao; Xiao-Qiang Deng; Yong-Qiu Mao; Wei Shi; Qingqing Tang; Zheng-Guang Li; Yu-Zhu Zheng; Sheng-Yong Yang; Yuquan Wei
{\text{AUC}}_{{0 - \infty }}
Toxicology Letters | 2012
Yan Li; Zhengtao Hu; Bo Chen; Qian Bu; Wenjie Lu; Yi Deng; Ruiming Zhu; Xue Shao; Jing Hou; Jinxuan Zhao; Hongyu Li; Baolai Zhang; Yina Huang; Lei Lv; Yinglan Zhao; Xiaobo Cen
Cellular Physiology and Biochemistry | 2008
Pei-Du Jiang; Yinglan Zhao; Wei Shi; Xiao-Qiang Deng; Gang Xie; Yong-qiu Mao; Zheng-Guang Li; Yu-Zhu Zheng; Sheng-Yong Yang; Yuquan Wei
and Cmax of plasma sunitinib were markedly reduced by co-administration of EGCG to rats. Our study firstly showed that EGCG interacted with sunitinib and reduced the bioavailability of sunitinib. This finding has significant practical implications for tea-drinking habit during sunitinib administration.
Molecular Cancer | 2013
Liang Wang; Jie Chen; Longqi Chen; Pengchi Deng; Qian Bu; Pu Xiang; Manli Li; Wenjie Lu; Youzhi Xu; Hongjun Lin; Tianming Wu; Huijuan Wang; Jing Hu; Xiaoni Shao; Xiaobo Cen; Yinglan Zhao
Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery.
Molecular Cancer | 2013
Huijuan Wang; Liang Wang; H. Zhang; Pengchi Deng; Jie Chen; Bin Zhou; Jing Hu; Jun Zou; Wenjie Lu; Pu Xiang; Tianming Wu; Xiaoni Shao; Yuan Li; Zong-Guang Zhou; Yinglan Zhao
Metastatic breast cancers are hard to treat and almost always fatal. Chloroquine diphosphate, a derivative of quinine, has long been used as a potent and commonly used medicine against different human diseases. We therefore investigated the effects of chloroquine diphosphate on a highly metastatic mouse mammary carcinoma cell line. In vitro treatment of 4T1 mouse breast cancer cells with chloroquine diphosphate resulted in significant inhibition of cellular proliferation and viability, and induction of apoptosis in 4T1 cells in a time- and dose-dependent manner. Further analysis indicated that induction of apoptosis was associated with the loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase. The effect of chloroquine diphosphate was then examined using a mice model in which 4T1 cells were implanted subcutaneously. Chloroquine diphosphate (25mg/kg and 50mg/kg, respectively) significantly inhibited the growth of the implanted 4T1 tumor cells and induced apoptosis in the tumor microenvironment. Moreover, the metastasis of tumor cells to the lungs was inhibited significantly and the survival of the mice enhanced. These data suggested that chloroquine diphosphate might have chemotherapeutic efficacy against breast cancer including inhibition of metastasis.
Bioorganic & Medicinal Chemistry Letters | 2010
Xiu-Xiu Zeng; Ren-Lin Zheng; Tian Zhou; Hai-Yun He; Ji-Yan Liu; Yu Zheng; Aiping Tong; Mingli Xiang; Xiangrong Song; Sheng-Yong Yang; Luoting Yu; Yuquan Wei; Yinglan Zhao; Li Yang
Methamphetamine (METH), a commonly abused psychostimulant, has been shown to induce neuronal damage by causing reactive oxygen species (ROS) formation, apoptosis and autophagy. Taurine (2-aminoethanesulfonic acid) is involved in several physiological actions in the brain, including neuroprotection, osmoregulation and neurotransmission. In this study, we investigate the protective effect of taurine against METH-induced neurotoxicity in PC12 cells and the underlying mechanism. The results showed that taurine significantly increased the cell viability inhibited by METH. LC3-II expression was elevated by METH treatment, whereas such increase was obviously attenuated by taurine. Co-treatment of taurine strongly reversed the decline of antioxidase activities induced by METH. Moreover, phosphorylated mammalian target of rapamycin (p-mTOR) was significantly inhibited by METH, whereas complementation of taurine markedly increased the expression of p-mTOR in PC12 cells, rather than phosphorylated Erk. Interestingly, taurine-induced decreasing expression of LC3-II was partially blocked by pretreatment of RAD001, an mTOR inhibitor. These results indicated that taurine inhibits METH-induced autophagic process through activating mTOR rather than Erk signaling. Collectively, our study shows that taurine protects METH-induced PC12 cells damage by attenuating ROS production, apoptosis and autophagy, at least in part, via mTOR signaling pathway.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2012
Guangyan Yan; Yina Huang; Qian Bu; Lei Lv; Pengchi Deng; Jiaqing Zhou; Yanli Wang; Yanzhu Yang; Qiangqiang Liu; Xiaobo Cen; Yinglan Zhao
Chloroquine is an antimalarial drug that has been used in the treatment and prophylaxis of malaria since the 1950s. The present study was undertaken to examine the effects of chloroquine on Bcap-37 human breast cancer cells’ growth, cell cycle modulation, apoptosis induction, and associated molecular alterations in vitro. The chloroquine treatment decreased the viability of Bcap-37 cells in a concentration- and time-dependent manner, which correlated with G2/M phase cell cycle arrest. The chloroquine-mediated cell cycle arrest was associated with a decrease in protein levels/activity of polo-like kinase 1 (Plk1), phosphorylated cell division cycle 25C (Cdc25C), phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated Akt. The chloroquine-treated Bcap-37 cells exhibited a marked decrease in the level of mitochondrial transmembrane potential (ΔΨm), which was accompanied by the activation of caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP). Exposure of Bcap-37 cells to chloroquine also resulted in the induction of spindle abnormalities. In conclusion, the findings in this study suggested that chloroquine might have potential anticancer efficacy, which could be attributed, in part, to its proliferation inhibition and apoptosis induction of cancer cells through modulation of apoptosis and cell cycle-related proteins expressions, down-regulation of mitochondrial transmembrane potential (ΔΨm), and induction of spindle abnormalities.