Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingli Sun is active.

Publication


Featured researches published by Yingli Sun.


Nature Cell Biology | 2009

Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60.

Yingli Sun; Xiaofeng Jiang; Ye Xu; Marina K. Ayrapetov; Lisa A. Moreau; Johnathan R. Whetstine; Brendan D. Price

DNA double-strand break (DSB) repair involves complex interactions between chromatin and repair proteins, including Tip60, a tumour suppressor. Tip60 is an acetyltransferase that acetylates both histones and ATM (ataxia telangiectasia mutated) kinase. Inactivation of Tip60 leads to defective DNA repair and increased cancer risk. However, how DNA damage activates the acetyltransferase activity of Tip60 is not known. Here, we show that direct interaction between the chromodomain of Tip60 and histone H3 trimethylated on lysine 9 (H3K9me3) at DSBs activates the acetyltransferase activity of Tip60. Depletion of intracellular H3K9me3 blocks activation of the acetyltransferase activity of Tip60, resulting in defective ATM activation and widespread defects in DSB repair. In addition, the ability of Tip60 to access H3K9me3 is dependent on the DNA damage-induced displacement of HP1β (heterochromatin protein 1β) from H3K9me3. Finally, we demonstrate that the Mre11–Rad50–Nbs1 (MRN) complex targets Tip60 to H3K9me3, and is required to activate the acetyltransferase activity of Tip60. These results reveal a new function for H3K9me3 in coordinating activation of Tip60-dependent DNA repair pathways, and imply that aberrant patterns of histone methylation may contribute to cancer by altering the efficiency of DSB repair.


Molecular and Cellular Biology | 2007

DNA Damage-Induced Acetylation of Lysine 3016 of ATM Activates ATM Kinase Activity

Yingli Sun; Ye Xu; Kanaklata Roy; Brendan D. Price

ABSTRACT The ATM protein kinase is essential for cells to repair and survive genotoxic events. The activation of ATMs kinase activity involves acetylation of ATM by the Tip60 histone acetyltransferase. In this study, systematic mutagenesis of lysine residues was used to identify regulatory ATM acetylation sites. The results identify a single acetylation site at lysine 3016, which is located in the highly conserved C-terminal FATC domain adjacent to the kinase domain. Antibodies specific for acetyl-lysine 3016 demonstrate rapid (within 5 min) in vivo acetylation of ATM following exposure to bleomycin. Furthermore, lysine 3016 of ATM is a substrate in vitro for the Tip60 histone acetyltransferase. Mutation of lysine 3016 does not affect unstimulated ATM kinase activity but does abolish upregulation of ATMs kinase activity by DNA damage, inhibits the conversion of inactive ATM dimers to active ATM monomers, and prevents the ATM-dependent phosphorylation of the p53 and chk2 proteins. These results are consistent with a model in which acetylation of lysine 3016 in the FATC domain of ATM activates the kinase activity of ATM. The acetylation of ATM on lysine 3016 by Tip60 is therefore a key step linking the detection of DNA damage and the activation of ATM kinase activity.


FEBS Letters | 2006

Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation

Yingli Sun; Xiaofeng Jiang; Shujuan Chen; Brendan D. Price

Histone acetyltransferases (HATs) regulate transcription, chromatin structure and DNA repair. Here, we utilized a novel HAT inhibitor, anacardic acid, to examine the role of HATs in the DNA damage response. Anacardic acid inhibits the Tip60 HAT in vitro, and blocks the Tip60‐dependent activation of the ATM and DNA–PKcs protein kinases by DNA damage in vivo. Further, anacardic acid sensitizes human tumor cells to the cytotoxic effects of ionizing radiation. These results demonstrate a central role for HATs such as Tip60 in regulating the DNA damage response. HAT inhibitors provide a novel therapeutic approach for increasing the sensitivity of tumors to radiation therapy.


Cell Cycle | 2010

Tip60: Connecting chromatin to DNA damage signaling

Yingli Sun; Xiaofeng Jiang; Brendan D. Price

Cells are constantly exposed to genotoxic events that can damage DNA. To counter this, cells have evolved a series of highly conserved DNA repair pathways to maintain genomic integrity. The ATM protein kinase is a master regulator of the DNA double-strand break (DSB) repair pathway. DSBs activate ATM’s kinase activity, promoting the phosphorylation of proteins involved in both checkpoint activation and DNA repair. Recent work has revealed that two DNA damage response proteins, the Tip60 acetyltransferase and the mre11-rad50-nbs1 (MRN) complex, co-operate in the activation of ATM in response to DSBs. MRN functions to target ATM and the Tip60 acetyltransferase to DSBs. Tip60’s chromodomain then interacts with histone H3 trimethylated on lysine 9, activating Tip60’s acetyltransferase activity and stimulating the subsequent acetylation and activation of ATM’s kinase activity. These results underscore the importance of chromatin structure in regulating DNA damage signaling and emphasize how histone modifications co-ordinate DNA repair. In addition, human tumors frequently exhibit altered patterns of histone methylation. This rewriting of the histone methylation code in tumor cells may impact the efficiency of DSB repair, increasing genomic instability and contributing to the initiation and progression of cancer.


Journal of Cell Biology | 2010

The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair

Ye Xu; Yingli Sun; Xiaofeng Jiang; Marina K. Ayrapetov; Patryk Moskwa; Shenghong Yang; David M. Weinstock; Brendan D. Price

p400 unwinds chromatin from nucleosomes flanking double-strand breaks to facilitate recruitment of the DNA repair components brca1 and 53BP1.


Journal of Biological Chemistry | 2006

The FATC Domains of PIKK Proteins Are Functionally Equivalent and Participate in the Tip60-dependent Activation of DNA-PKcs and ATM

Xiaofeng Jiang; Yingli Sun; Shujuan Chen; Kanaklata Roy; Brendan D. Price

Members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, including the ATM, DNA-PKcs, Atr, and Trrap proteins, function in signal transduction pathways that activate the DNA damage response. PIKK proteins contain a conserved C-terminal FAT/kinase domain/FATC domain structure. The FATC domain of ATM mediates the interaction between ATM and Tip60, a histone acetyltransferase that regulates activation of ATM. Here, we examined whether the FATC domains of DNA-PKcs, Atr, and Trrap were also able to interact with Tip60. Deletion of the FATC domain of ATM blocked the interaction between ATM and Tip60 and suppressed the activation of ATM kinase activity by DNA damage. Replacement of the FATC domain of ATM with the FATC domains of DNA-PKcs, Atr, or Trrap restored the activation of ATM and its association with Tip60. These results indicate that the FATC domains of DNA-PKcs, Atr, Trrap, and ATM are functionally equivalent. Immunoprecipitation experiments demonstrated that Tip60 is constitutively associated with DNA-PKcs and that the histone acetyltransferase activity associated with DNA-PKcs is up-regulated by DNA damage. When Tip60 expression was suppressed by small interfering RNA, the activation of DNA-PKcs (measured by autophosphorylation of DNA-PKcs at serine 2056 and threonine 2609) was inhibited, demonstrating a key role for Tip60 in the activation of DNA-PKcs by DNA damage. The conserved FATC domain of PIKK proteins may therefore function as a binding domain for the Tip60 histone acetyltransferase. Further, the ability of Tip60 to regulate the activation of both ATM and DNA-PKcs in response to DNA damage demonstrates that Tip60 is a key component of the DNA damage-signaling network.


Clinical Cancer Research | 2009

High-Throughput Screening Identifies Two Classes of Antibiotics as Radioprotectors: Tetracyclines and Fluoroquinolones

Kwanghee Kim; Julianne M. Pollard; Andrew J. Norris; J. Tyson McDonald; Yingli Sun; Ewa D. Micewicz; Kelly Pettijohn; Robert Damoiseaux; Keisuke S. Iwamoto; James Sayre; Brendan D. Price; Richard A. Gatti; William H. McBride

Purpose: Discovery of agents that protect or mitigate normal tissue from radiation injury during radiotherapy, accidents, or terrorist attacks is of importance. Specifically, bone marrow insufficiency, with possible infection due to immunosuppression, can occur after total body irradiation (TBI) or regional irradiation and is a major component of the acute radiation syndrome. The purpose of this study was to identify novel radioprotectors and mitigators of the hematopoietic system. Experimental Design: High-throughput screening of small-molecule libraries was done using viability of a murine lymphocyte line as a readout with further validation in human lymphoblastoid cells. The selected compounds were then tested for their ability to counter TBI lethality in mice. Results: All of two major classes of antibiotics, tetracyclines and fluoroquinolones, which share a common planar ring moiety, were radioprotective. Furthermore, tetracycline protected murine hematopoietic stem/progenitor cell populations from radiation damage and allowed 87.5% of mice to survive when given before and 35% when given 24 h after lethal TBI. Interestingly, tetracycline did not alter the radiosensitivity of Lewis lung cancer cells. Tetracycline and ciprofloxacine also protected human lymphoblastoid cells, reducing radiation-induced DNA double-strand breaks by 33% and 21%, respectively. The effects of these agents on radiation lethality are not due to the classic mechanism of free radical scavenging but potentially through activation of the Tip60 histone acetyltransferase and altered chromatin structure. Conclusions: Tetracyclines and fluoroquinolones can be robust radioprotectors and mitigators of the hematopoietic system with potential utility in anticancer radiotherapy and radiation emergencies. (Clin Cancer Res 2009;15(23):7238–45)


Journal of Biological Chemistry | 2005

DNA Damage-induced Association of ATM with Its Target Proteins Requires a Protein Interaction Domain in the N Terminus of ATM

Norvin Fernandes; Yingli Sun; Shujuan Chen; Proma Paul; Reuben J. Shaw; Lewis C. Cantley; Brendan D. Price

The ATM protein kinase regulates the response of the cell to DNA damage by associating with and then phosphorylating proteins involved in cell cycle checkpoints and DNA repair. Here, we report on deletion studies designed to identify protein domains required for ATM to phosphorylate target proteins and to control cell survival following exposure to ionizing radiation. Deletion studies demonstrated that amino acids 1–150 of ATM were required for the ATM protein to regulate cellular radiosensitivity. Additional deletions and point mutations indicated that this domain extended from amino acids 81–106 of ATM, with amino acid substitutions located between amino acids 91 and 97 inactivating the functional activity of ATM. When ATM with mutations in this region (termed ATM90) was expressed in AT cells, it was unable to restore normal radiosensitivity to the cells. However, ATM90 retained normal kinase activity and was autophosphorylated on serine 1981 following exposure to DNA damage. Furthermore, wild-type ATM displayed DNA-damage induced association with p53, brca1, and LKB1 in vivo, whereas ATM90 failed to form productive complexes with these target proteins either in vivo or in vitro. Furthermore, ATM90 did not phosphorylate p53 in vivo and did not form nuclear foci in response to ionizing radiation. We propose that amino acids 91–97 of ATM contain a protein interaction domain required for the DNA damage-induced association between ATM and its target proteins, including the brca1, p53, and LKB1 proteins. Furthermore, this domain of ATM is required for ATM to form nuclear foci following exposure to ionizing radiation.


Journal of Biological Chemistry | 2007

Activation of the Kinase Activity of ATM by Retinoic Acid Is Required for CREB-dependent Differentiation of Neuroblastoma Cells

Norvin Fernandes; Yingli Sun; Brendan D. Price

The ATM protein kinase is mutated in ataxia telangiectasia, a genetic disease characterized by defective DNA repair, neurodegeneration, and growth factor signaling defects. The activity of ATM kinase is activated by DNA damage, and this activation is required for cells to survive genotoxic events. In addition to this well characterized role in DNA repair, we now demonstrate a novel role for ATM in the retinoic acid (RA)-induced differentiation of SH-SY5Y neuroblastoma cells into post-mitotic, neuronal-like cells. RA rapidly activates the activity of ATM kinase, leading to the ATM-dependent phosphorylation of the CREB protein, extrusion of neuritic processes, and differentiation of SH-SY5Y cells into neuronal-like cells. When ATM protein expression was suppressed by short hairpin RNA, the ATM-dependent phosphorylation of CREB was blocked. Furthermore, ATM-negative cells failed to differentiate into neuronal-like cells when exposed to retinoic acid; instead, they underwent cell death. Expression of a constitutively active CREBVP16 construct, or exposure to forskolin to induce CREB phosphorylation, rescued ATM negative cells and restored differentiation. Furthermore, when dominant negative CREB proteins with mutations in either the CREB phosphorylation site (CREBS133A) or the DNA binding domain (KCREB) were introduced into SH-SY5Y cells, retinoic acid-induced differentiation was blocked and the cells underwent cell death. The results demonstrate that ATM is required for the retinoic acid-induced differentiation of SH-SY5Y cells through the ATM dependent-phosphorylation of serine 133 of CREB. These results therefore define a novel mechanism for activation of the activity of ATM kinase by RA, and implicate ATM in the regulation of CREB function during RA-induced differentiation.


Cell Research | 2015

GATA family members as inducers for cellular reprogramming to pluripotency

Jian Shu; Ke Zhang; Minjie Zhang; Anzhi Yao; Sida Shao; Fengxia Du; Caiyun Yang; Wenhan Chen; Chen Wu; Weifeng Yang; Yingli Sun; Hongkui Deng

Members of the GATA protein family play important roles in lineage specification and transdifferentiation. Previous reports show that some members of the GATA protein family can also induce pluripotency in somatic cells by substituting for Oct4, a key pluripotency-associated factor. However, the mechanism linking lineage-specifying cues and the activation of pluripotency remains elusive. Here, we report that all GATA family members can substitute for Oct4 to induce pluripotency. We found that all members of the GATA family could inhibit the overrepresented ectodermal-lineage genes, which is consistent with previous reports indicating that a balance of different lineage-specifying forces is important for the restoration of pluripotency. A conserved zinc-finger DNA-binding domain in the C-terminus is critical for the GATA family to induce pluripotency. Using RNA-seq and ChIP-seq, we determined that the pluripotency-related gene Sall4 is a direct target of GATA family members during reprogramming and serves as a bridge linking the lineage-specifying GATA family to the pluripotency circuit. Thus, the GATA family is the first protein family of which all members can function as inducers of the reprogramming process and can substitute for Oct4. Our results suggest that the role of GATA family in reprogramming has been underestimated and that the GATA family may serve as an important mediator of cell fate conversion.

Collaboration


Dive into the Yingli Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fengxia Du

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Caiyun Yang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Minjie Zhang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Xiao Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guochao Li

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ye Xu

Harvard University

View shared research outputs
Top Co-Authors

Avatar

Junyun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dong Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge