Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingmei Feng is active.

Publication


Featured researches published by Yingmei Feng.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Human ApoA-I Transfer Attenuates Transplant Arteriosclerosis via Enhanced Incorporation of Bone marrow–derived Endothelial Progenitor Cells

Yingmei Feng; Frank Jacobs; Eline Van Craeyveld; Christine Brunaud; Jan Snoeys; Marc Tjwa; Sophie Van Linthout; Bart De Geest

Objective—Transplant arteriosclerosis is the leading cause of graft failure and death in patients with heart transplantation. Endothelial progenitor cells (EPCs) contribute to endothelial regeneration in allografts. We investigated whether increased HDL cholesterol induced by adenoviral human apoA-I (AdA-I) transfer increases number and function of EPCs, promotes incorporation of EPCs in Balb/c allografts transplanted paratopically in C57BL/6 ApoE−/− mice, and attenuates transplant arteriosclerosis. Methods and Results—EPC number in ApoE−/− mice was increased after AdA-I transfer as evidenced by 1.5-fold (P<0.01) higher Flk-1 Sca-1–positive cells and 1.4-fold (P<0.01) higher DiI-acLDL isolectin-positive spleen cells. In addition, HDL enhanced EPC function in vitro. Incorporation of bone marrow–derived EPCs was 5.8-fold (P<0.01) higher at day 21 after transplantation in AdA-I-treated apoE−/− mice compared with control mice. Enhanced endothelial regeneration in AdA-I-treated apoE−/− mice as evidenced by a 2.6-fold (P<0.01) increase of CD31-positive endothelial cells resulted in a 1.4-fold (P=0.059) reduction of neointima and a 3.9-fold (P<0.01) increase of luminal area. Conclusion—Human apoA-I transfer increases the number of circulating EPCs, enhances their incorporation into allografts, promotes endothelial regeneration, and attenuates neointima formation in a murine model of transplant arteriosclerosis.


Blood | 2009

Critical role of scavenger receptor-BI-expressing bone marrow-derived endothelial progenitor cells in the attenuation of allograft vasculopathy after human apo A-I transfer.

Yingmei Feng; Miranda Van Eck; Eline Van Craeyveld; Frank Jacobs; Vincent Carlier; Sophie Van Linthout; Martin Erdel; Marc Tjwa; Bart De Geest

Allograft vasculopathy is the leading cause of death in patients with heart transplantation. Accelerated endothelial regeneration mediated by enhanced endothelial progenitor cell (EPC) incorporation may attenuate the development of allograft vasculopathy. We investigated the hypothesis that modulation of EPC biology and attenuation of allograft vasculopathy by increased high-density lipoprotein cholesterol after human apo A-I (AdA-I) transfer requires scavenger receptor (SR)-BI expression in bone marrow-derived EPCs. After AdA-I transfer, the number of circulating EPCs increased 2.0-fold (P < .001) at different time points in C57BL/6 mice transplanted with SR-BI(+/+) bone marrow but remained unaltered in mice with SR-BI(-/-) bone marrow. The effect of high-density lipoprotein on EPC migration in vitro requires signaling via SR-BI and extracellular signal-regulated kinases and is dependent on increased nitric oxide (NO) production in EPCs. Human apo A-I transfer 2 weeks before paratopic artery transplantation reduced intimal area at day 21 3.7-fold (P < .001) in mice with SR-BI(+/+) bone marrow but had no effect in mice with SR-BI(-/-) bone marrow. AdA-I transfer potently stimulated EPC incorporation and accelerated endothelial regeneration in chimeric SR-BI(+/+) mice but not in chimeric SR-BI(-/-) mice. In conclusion, human apo A-I transfer accelerates endothelial regeneration mediated via SR-BI expressing bone marrow-derived EPCs, thereby preventing allograft vasculopathy.


Atherosclerosis | 2010

Impact of HDL on adipose tissue metabolism and adiponectin expression

Sophie Van Linthout; Anna Foryst-Ludwig; Frank Spillmann; Jun Peng; Yingmei Feng; Marco Meloni; Eline Van Craeyveld; Ulrich Kintscher; H.P. Schultheiss; Bart De Geest; Carsten Tschöpe

OBJECTIVE The objective of the current study was to investigate the hypothesis that high-density lipoprotein (HDL) influences adipocyte metabolism and adiponectin expression. Therefore, HDL was increased in vivo via apolipoprotein (apo) A-I gene transfer and in vitro via supplementation of HDL to partly differentiated adipocytes, in the presence or absence of lipopolysaccharide (LPS), known to decrease HDL cholesterol and adiponectin levels in vivo. METHODS AND RESULTS Apo A-I transfer resulted in a significant increase of HDL cholesterol in control and LPS-injected C57BL/6 mice, which was paralleled by an increase in plasma adiponectin levels and adiponectin expression in abdominal fat. Triglyceride and free fatty acids levels after LPS administration were 2.2-fold (p<0.05) and 1.3-fold (p<0.05) lower, respectively, in Ad.hapoA-I-LPS than in Ad.Null-LPS mice. In parallel, the LPS-induced mRNA expression of hormone sensitive lipase was 3.5-fold (p=0.05) decreased in the Ad.hapoA-I-LPS group. On the other hand, apo A-I transfer abrogated the LPS-mediated reduction in lipin-1 and CD36 mRNA expression by 8.2-fold (p<0.05) and 18-fold (p<0.05), respectively. Concomitantly, the phosphorylation state of Akt was 2.0-fold (p<0.05) increased in the Ad.hapoA-I-LPS compared to the Ad.Null-LPS group. Pre-incubation of partly differentiated adipocytes with HDL (50 microg protein/ml) increased adiponectin expression by 1.5-fold under basal conditions (p<0.05) and could abrogate LPS-induced down-regulation of adiponectin, both in a phosphatidylinositol-3-kinase-dependent manner. CONCLUSIONS HDL affects adipocyte metabolism and adiponectin expression.


PLOS ONE | 2012

Hematopoietic Stem/Progenitor Cell Proliferation and Differentiation Is Differentially Regulated by High-Density and Low-Density Lipoproteins in Mice

Yingmei Feng; Sarah Schouteden; Rachel Geenens; Vik Van Duppen; Paul Herijgers; Paul Holvoet; Paul P. Van Veldhoven; Catherine M. Verfaillie

Rationale Hematopoietic stem/progenitor cells (HSPC) are responsible for maintaining the blood system as a result of their self-renewal and multilineage differentiation capacity. Recently, studies have suggested that HDL cholesterol may inhibit and impaired cholesterol efflux may increase HSPC proliferation and differentiation. Objectives We hypothesized that LDL may enhance HSPC proliferation and differentiation while HDL might have the opposing effect which might influence the size of the pool of inflammatory cells. Methods and Results HSPC number and function were studied in hypercholesterolemic LDL receptor knockout (LDLr−/−) mice on high fat diet. Hypercholesterolemia was associated with increased frequency of HSPC, monocytes and granulocytes in the peripheral blood (PB). In addition, an increased proportion of BM HSPC was in G2M of the cell cycle, and the percentage of HSPC and granulocyte-macrophage progenitors (GMP) increased in BM of LDLr−/− mice. When BM Lin-Sca-1+cKit+ (i.e. “LSK”) cells were cultured in the presence of LDL in vitro we also found enhanced differentiation towards monocytes and granulocytes. Furthermore, LDL promoted lineage negative (Lin−) cells motility. The modulation by LDL on HSPC differentiation into granulocytes and motility was inhibited by inhibiting ERK phosphorylation. By contrast, when mice were infused with human apoA-I (the major apolipoprotein of HDL) or reconstituted HDL (rHDL), the frequency and proliferation of HSPC was reduced in BM in vivo. HDL also reversed the LDL-induced monocyte and granulocyte differentiation in vitro. Conclusion Our data suggest that LDL and HDL have opposing effects on HSPC proliferation and differentiation. It will be of interest to determine if breakdown of HSPC homeostasis by hypercholesterolemia contributes to inflammation and atherosclerosis progression.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Regulation of High-Density Lipoprotein on Hematopoietic Stem/Progenitor Cells in Atherosclerosis Requires Scavenger Receptor Type BI Expression

Mingming Gao; Dongxing Zhao; Sarah Schouteden; Mary G. Sorci-Thomas; Paul P. Van Veldhoven; Kristel Eggermont; George Liu; Catherine M. Verfaillie; Yingmei Feng

Objective— Recently, we demonstrated that scavenger receptor type BI (SR-BI), a high-density lipoprotein (HDL) receptor, was expressed on murine hematopoietic stem/progenitor cells (HSPC) and infusion of reconstituted HDL and purified human apolipoprotein A-I (apoA-I) suppressed HSPC proliferation. We hypothesized that SR-B1 expression is required for the observed antiproliferative effects of HDL on HSPC. Approach and Results— SR-BI–deficient (SR-BI−/−) mice and wild-type controls were fed on chow or high-fat diet (HFD) for 8 to 10 weeks. Under chow diet, a significant increase in Lin− Sca1+ cKit+ cells (LSK cells, so-called HSPC) was found in the bone marrow of SR-BI−/− mice when compared with wild-type mice. HFD induced a further expansion of CD150+CD48- LSK cells (HSC), HSPC, and granulocyte monocyte progenitors in SR-BI−/− mice. Injection of reactive oxygen species inhibitor N-acetylcysteine attenuated HFD-induced HSPC expansion, leukocytosis, and atherosclerosis in SR-BI−/− mice. ApoA-I infusion inhibited HSPC cell proliferation, Akt phosphorylation and reactive oxygen species production in HSPC and plaque progression in low-density lipoprotein receptor knockout (LDLr−/−) apoA-I−/− mice on HFD but had no effect on SR-BI−/− mice on HFD. Transplantation of SR-BI−/− bone marrow cells into irradiated LDLr−/− recipients resulted in enhanced white blood cells reconstitution, inflammatory cell production, and plaque development. In patients with coronary heart disease, HDL levels were negatively correlated with white blood cells count and HSPC frequency in the peripheral blood. By flow cytometry, SR-BI expression was detected on human HSPC. Conclusions— SR-BI plays a critical role in the HDL-mediated regulation HSPC proliferation and differentiation, which is associated with atherosclerosis progression.


Journal of Molecular Medicine | 2009

Wild-type apo A-I and apo A-I Milano gene transfer reduce native and transplant arteriosclerosis to a similar extent

Yingmei Feng; Eline Van Craeyveld; Frank Jacobs; Joke Lievens; Jan Snoeys; Bart De Geest

Apolipoprotein (apo) A-IMilano is an apo A-I mutant characterized by a cysteine for arginine substitution at position 173. Apo A-IMilano carriers have much less atherosclerosis than expected from their low plasma high-density lipoprotein cholesterol levels, suggesting that this mutant may have superior atheroprotective properties. Here, we compare the effect of hepatocyte-directed gene transfer of wild-type human apo A-I and human apo A-IMilano on endothelial progenitor cell (EPC) biology and on the progression of native atherosclerosis and allograft vasculopathy in C57BL/6 apo E−/− mice. Human apo A-I and apo A-IMilano transfer resulted in an equivalent increase of EPC number and function as well as EPC incorporation and endothelial regeneration in allografts and inhibited the progression of native atherosclerosis and allograft vasculopathy to a similar extent. In conclusion, the current head-to-head comparison indicates that human apo A-IMilano transfer is not superior compared to wild-type human apo A-I transfer.


Atherosclerosis | 2008

Adenoviral low density lipoprotein receptor attenuates progression of atherosclerosis and decreases tissue cholesterol levels in a murine model of familial hypercholesterolemia

Frank Jacobs; Eline Van Craeyveld; Yingmei Feng; Jan Snoeys; Bart De Geest

Familial hypercholesterolemia is an autosomal codominant disease characterized by high concentrations of pro-atherogenic lipoproteins and premature atherosclerosis secondary to low density lipoprotein receptor (LDLr) deficiency. In the current study, the effects of gene transfer with 5 x 10(10) particles of E1E3E4-deleted adenoviral vectors expressing the LDLr (AdLDLr) or VLDLr (AdVLDLr) under control of the hepatocyte-specific human alpha(1)-antitrypsin promoter and 4 copies of the human apo E enhancer in C57BL/6 LDLr(-/-) mice were investigated. Evaluation was performed in both sexes and in mice fed either standard chow or an atherogenic diet containing 0.2% cholesterol and 10% coconut oil. Compared to control mice, AdLDLr and AdVLDLr persistently decreased plasma non-HDL cholesterol in both sexes and on both diets. Six months after LDLr gene transfer in mice fed the atherogenic diet, average intimal area was 2.5-fold (p<0.01) and 3.2-fold (p<0.001) lower in male and female mice, respectively, compared to controls. In mice fed standard chow, intimal area was reduced 22-fold (p<0.001) and 21-fold (p<0.001) after LDLr gene transfer in male and female mice, respectively. We show that non-HDL lipoproteins are more atherogenic in female mice, independent of sex differences of plasma HDL cholesterol levels, and that saturated fat does not have an effect on atherosclerosis independent of plasma cholesterol levels. Finally, quantification of tissue cholesterol levels indicates that AdLDLr does not induce cholesterol accumulation in the liver and reduces cholesterol content in the myocardium, quadriceps muscle and kidney. In conclusion, hepatocyte-specific LDLr gene transfer significantly improves cholesterol homeostasis in LDLr(-/-) mice.


Atherosclerosis | 2011

Topical HDL administration reduces vein graft atherosclerosis in apo E deficient mice.

Yingmei Feng; Stephanie C. Gordts; Feng Chen; Yanhua Hu; Eline Van Craeyveld; Frank Jacobs; Vincent Carlier; Yuanbo Feng; Zhiyong Zhang; Qingbo Xu; Yicheng Ni; Bart De Geest

OBJECTIVE Use of autologous vein grafts for surgical revascularisation is limited by vein graft failure. Topical high-density lipoprotein (HDL) administration on the adventitial side of vein grafts was evaluated as a new therapeutic modality to improve vein graft patency and function. METHODS Caval veins of C57BL/6 apo E(-/-) mice were grafted to the right carotid arteries of recipient 3 month-old C57BL/6 TIE2-LacZ/apo E(-/-) mice. HDL (200 μg/ml; 50 μl) in 20% pluronic F-127 gel was applied on the adventitial side of vein grafts. RESULTS Topical HDL application reduced intimal area by 55% (p < 0.001) at day 28 compared to control mice. Blood flow quantified by micro magnetic resonance imaging at day 28 was 2.8-fold (p < 0.0001) higher in grafts of topical HDL treated mice than in control mice. Topical HDL potently reduced intimal inflammation and resulted in enhanced endothelial regeneration as evidenced by a 1.9-fold (p < 0.05) increase in the number of CD31 positive endothelial cells. HDL potently enhanced migration and adhesion of endothelial colony-forming cells (ECFCs) in vitro, and these effects were dependent on signaling via scavenger receptor-BI, extracellular signal-regulated kinases, and NO, and on increased β1 integrin expression. Correspondingly, the number of CD31 β-galactosidase double positive cells, reflecting incorporated circulating progenitor cells, was 3.9-fold (p < 0.01) higher in grafts of HDL treated mice than in control grafts. CONCLUSIONS Topical HDL administration on the adventitial side of vein grafts attenuates vein graft atherosclerosis via increased incorporation of circulating progenitor cells in the endothelium, enhanced endothelial regeneration, and reduced intimal inflammation.


Cardiovascular Research | 2010

Hepatocyte-specific ABCA1 transfer increases HDL cholesterol but impairs HDL function and accelerates atherosclerosis

Yingmei Feng; Joke Lievens; Frank Jacobs; Menno Hoekstra; Eline Van Craeyveld; Stephanie C. Gordts; Jan Snoeys; Bart De Geest

AIMS The ATP-binding cassette transporter A1 (ABCA1) lipidates apolipoprotein (apo) A-I. The hypothesis that hepatocyte-specific ABCA1 overexpression results in high-density lipoprotein (HDL) dysfunction was evaluated by comparing the effects of murine ABCA1 (AdABCA1) and human apo A-I (AdA-I) transfer on lipoprotein profile, HDL function, and progression of atherosclerosis. METHODS AND RESULTS Gene transfer in male and female C57BL/6 apo E(-/-) mice was performed at the age of 3 months with E1E3E4-deleted adenoviral vectors containing hepatocyte-specific expression cassettes. Atherosclerosis was quantified at baseline and 56 days later in AdABCA1, AdA-I, and control mice. HDL cholesterol after AdA-I transfer was 1.7-fold (P < 0.001) and 1.8-fold (P < 0.001) higher in male and female mice, respectively, and potently inhibited atherosclerosis progression compared with respective controls. Notwithstanding a 1.4-fold (P < 0.01) and a 1.7-fold (P < 0.01) increase of HDL cholesterol in male and female mice, respectively, after AdABCA1 transfer, the intima was 2.2-fold (P < 0.001) larger in male and 1.3-fold (P = NS) larger in female mice compared with respective controls. HDL isolated from control and AdA-I mice but not from AdABCA1 mice enhanced endothelial progenitor cell (EPC) migration in vitro and reduced endothelial cell death in vitro after serum and growth factor withdrawal. Scavenger receptor class B type I (SR-BI) protein level in the liver was significantly lower in AdABCA1 mice than in control and AdA-I mice. CONCLUSION Hepatocyte-specific ABCA1 transfer decreases SR-BI protein level in the liver and abrogates beneficial effects of HDL on EPCs and endothelial cells. Decreased HDL function may underlie accelerated atherosclerosis in AdABCA1 apo E(-/-)mice.


PLOS ONE | 2012

Enhanced Antitumor Efficacy of a Vascular Disrupting Agent Combined with an Antiangiogenic in a Rat Liver Tumor Model Evaluated by Multiparametric MRI

Feng Chen; Yingmei Feng; Kaier Zheng; Frederik De Keyzer; Junjie Li; Yuanbo Feng; Marlein Miranda Cona; Huaijun Wang; Yansheng Jiang; Jie Yu; Guy Marchal; Catherine M. Verfaillie; Bart De Geest; Raymond Oyen; Yicheng Ni

A key problem in solid tumor therapy is tumor regrowth from a residual viable rim after treatment with a vascular disrupting agent (VDA). As a potential solution, we studied a combined treatment of a VDA and antiangiogenic. This study was approved by the institutional ethical committee for the use and care of laboratory animals. Rats with implanted liver tumors were randomized into four treatment groups: 1) Zd6126 (Zd); 2) Thalidomide (Tha); 3) Zd in combination with Tha (ZdTha); and 4) controls. Multiparametric MRIs were performed and quantified before and after treatment. Circulating endothelial progenitor cells (EPCs) and plasma stromal cell-derived factor-1α (SDF-1α) were monitored. Tumor apoptosis, necrosis, and microvessels were verified by histopathology. A single use of Zd or Tha did not significantly delay tumor growth. The combined ZdTha showed enhanced antitumor efficacy due to synergistic effects; it induced a cumulative tumor apoptosis or necrosis, which resulted in significant delay in tumor growth and reduction in the viable tumor rim; it also reduced tumor vessel permeability; and it improved tumor hemodynamic indexes, most likely via a transient normalization of tumor vasculature induced by Tha. A stepwise linear regression analysis showed that the apparent diffusion coefficient was an independent predictor of tumor growth. We found no significant increases in Zd-induced circulating EPCs or plasma SDF-1α. ZdTha showed improved therapeutic efficacy in solid tumors compared to either agent alone. The therapeutic effects were successfully tracked in vivo with multiparametric MRI.

Collaboration


Dive into the Yingmei Feng's collaboration.

Top Co-Authors

Avatar

Bart De Geest

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Frank Jacobs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Eline Van Craeyveld

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joke Lievens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Desire Collen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Catherine M. Verfaillie

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marc Tjwa

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Vincent Carlier

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge