Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingnian Li is active.

Publication


Featured researches published by Yingnian Li.


Journal of Geophysical Research | 2008

Characterizing evapotranspiration over a meadow ecosystem on the Qinghai‐Tibetan Plateau

Song Gu; Yanhong Tang; Xiaoyong Cui; Mingyuan Du; Liang Zhao; Yingnian Li; Shixiao Xu; Huakun Zhou; Tomomichi Kato; Peitong Qi; Xinquan Zhao

To characterize evapotranspiration (ET) over grasslands on the Qinghai-Tibetan Plateau, we examined ET and its relevant environmental variables in a Kobresia meadow from 2002 to 2004 using the eddy covariance method. The annual precipitation changed greatly, with 554, 706, and 666 mm a(-1) for the three consecutive calendar years. The annual ET varied correspondingly to the annual precipitation with 341, 407, and 426 mm a(-1). The annual ET was, however, constant at about 60% of the annual precipitation. About 85% annual ET occurred during the growing season from May to September, and the averaged ET for this period was 1.90, 2.23, and 2.22 mm/d, respectively for the three consecutive years. The averaged ET was, however, very low (< 0.40 mm/d) during the nongrowing season from October to April. The annual canopy conductance (gc) and the Priestley-Taylor coefficient (a) showed the lowest values in the year with the lowest precipitation. This study first demonstrates that the alpine meadow ecosystem is characterized by a low ratio of annual ET to precipitation and that the interannual variation of ET is determined by annual precipitation.


Journal of Forest Research | 2013

Dataset of CarboEastAsia and uncertainties in the CO2 budget evaluation caused by different data processing

Nobuko Saigusa; Shenggong Li; Hyojung Kwon; Kentaro Takagi; Leiming Zhang; Reiko Ide; Masahito Ueyama; Jun Asanuma; Young-Jean Choi; Jung Hwa Chun; Shijie Han; Takashi Hirano; Ryuichi Hirata; Minseok Kang; Tomomichi Kato; Joon Kim; Yingnian Li; Takahisa Maeda; Akira Miyata; Yasuko Mizoguchi; Shohei Murayama; Yuichiro Nakai; Takeshi Ohta; Taku M. Saitoh; Huiming Wang; Guirui Yu; Yiping Zhang; Fenghua Zhao

The datasets of net ecosystem CO2 exchange (NEE) were acquired from 21 forests, 3 grasslands, and 3 croplands in the eastern part of Asia based on the eddy covariance measurements of the international joint program, CarboEastAsia. The program was conducted by three networks in Asia, ChinaFLUX, JapanFlux, and KoFlux, to quantify, synthesize, and understand the carbon budget of the eastern part of Asia. An intercomparison was conducted for NEE estimated by three gap-filling procedures adopted by ChinaFLUX, JapanFlux, and KoFlux to test the range of uncertainty in the estimation of NEE. The overall comparison indicated good agreement among the procedures in the seasonal patterns of NEE, although a bias was observed in dormant seasons depending on the different criteria of data screening. Based on the gap-filled datasets, the magnitude and seasonality of the carbon budget were compared among various biome types, phenology, and stress conditions throughout Asia. The annual values of gross primary production and ecosystem respiration were almost proportional to the annual air temperature. Forest management, including clear-cutting, plantation, and artificial drainage, was significant and obviously affected the annual carbon uptake within the forests. Agricultural management resulted in notable seasonal patterns in the crop sites. The dataset obtained from a variety of biome types would be an essential source of knowledge for ecosystem science as well as a valuable validation dataset for modeling and remote sensing to upscale the carbon budget estimations in Asia.


Journal of Geophysical Research | 2016

Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites

Yanlian Zhou; Xiaocui Wu; Weimin Ju; Jing M. Chen; Shaoqiang Wang; Huimin Wang; Wenping Yuan; T. Andrew Black; Rachhpal S. Jassal; Andreas Ibrom; Shijie Han; Junhua Yan; Hank A. Margolis; Olivier Roupsard; Yingnian Li; Fenghua Zhao; Gerard Kiely; Gregory Starr; Marian Pavelka; Leonardo Montagnani; Georg Wohlfahrt; Petra D'Odorico; David R. Cook; M. Altaf Arain; Damien Bonal; Jason Beringer; Peter D. Blanken; Benjamin Loubet; Monique Y. Leclerc; Giorgio Matteucci

Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (epsilon(msh)) was 2.63 to 4.59 times that of sunlit leaves (epsilon(msu)). Generally, the relationships of epsilon(msh) and epsilon(msu) with epsilon(max) were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR.


PLOS ONE | 2014

Hysteresis responses of evapotranspiration to meteorological factors at a diel timescale: patterns and causes.

Han Zheng; Qiufeng Wang; Xianjin Zhu; Yingnian Li; Guirui Yu

Evapotranspiration (ET) is an important component of the water cycle in terrestrial ecosystems. Understanding the ways in which ET changes with meteorological factors is central to a better understanding of ecological and hydrological processes. In this study, we used eddy covariance measurements of ET from a typical alpine shrubland meadow ecosystem in China to investigate the hysteresis response of ET to environmental variables including air temperature (T a), vapor pressure deficit (VPD) and net radiation (R n) at a diel timescale. Meanwhile, the simulated ET by Priestly-Taylor equation was used to interpret the measured ET under well-watered conditions. Pronounced hysteresis was observed in both T a and VPD response curves of ET. At a similar T a and VPD, ET was always significantly depressed in the afternoon compared with the morning. But the hysteresis response of ET to R n was not evident. Similar hysteresis patterns were also observed in the T a/VPD response curves of simulated ET. The magnitudes of the measured and simulated hysteresis loops showed similar seasonal variation, with relatively smaller values occurring from May to September, which agreed well with the lifetime of plants and the period of rainy season at this site. About 62% and 23% of changes in the strength of measured ET-T a and ET-VPD loops could be explained by the changes in the strength of simulated loops, respectively. Thus, the time lag between R n and T a/VPD is the most important factor generating and modulating the ET-T a/VPD hysteresis, but plants and water status also contribute to the hysteresis response of ET. Our research confirmed the different hysteresis in the responses of ET to meteorological factors and proved the vital role of R n in driving the diel course of ET.


Ecology and Evolution | 2012

Gene or environment? Species-specific control of stomatal density and length

Lirong Zhang; Haishan Niu; Shiping Wang; Xiaoxue Zhu; Caiyun Luo; Yingnian Li; Xinquan Zhao

Stomatal characteristics are used as proxies of paleo-environment. Only a few model species have been used to study the mechanisms of genetic and environmental effects on stomatal initiation. Variation among species has not been quantified. In this paper, results from an in situ reciprocal transplant experiment along an elevation gradient in the northeast Tibetan Plateau are reported, in which the relative effects of genetics (original altitude) and environment (transplant altitude) on stomatal density (SD) and length (SL) were quantified. In Thalictrum alpinum, only the environment significantly influenced SD, with the variance component () of the environment found to be much greater than that of genetics () (). In Kobresia humillis, only genetics significantly influenced SD and SL, with the genetics variance component found to be greater than that of the environment (, for SD). These results suggest that the extent to which genetics and the environment determine stomatal initiation and development is species-specific. This needs to be considered when studying genetic or environmental controls of stomatal initiation, as well as when SD and SL are used as proxies for ancient climate factors (e.g., CO2 concentration).


Remote Sensing | 2015

Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales

Xiaocui Wu; Weimin Ju; Yanlian Zhou; Mingzhu He; Beverly E. Law; T. Andrew Black; Hank A. Margolis; Alessandro Cescatti; Lianhong Gu; Leonardo Montagnani; Asko Noormets; Timothy J. Griffis; Kim Pilegaard; Andrej Varlagin; Riccardo Valentini; Peter D. Blanken; Shaoqiang Wang; Huimin Wang; Shijie Han; Junhua Yan; Yingnian Li; Bingbing Zhou; Yibo Liu

The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001) than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale.


Tellus B | 2016

Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems

Junjiong Shao; Xuhui Zhou; Yiqi Luo; Bo Li; Mika Aurela; David P. Billesbach; Peter D. Blanken; Rosvel Bracho; Jiquan Chen; Marc L. Fischer; Yuling Fu; Lianhong Gu; Shijie Han; Yongtao He; Thomas E. Kolb; Yingnian Li; Zoltán Nagy; Shuli Niu; Walter C. Oechel; Krisztina Pintér; Peili Shi; Andrew E. Suyker; Margaret S. Torn; Andrej Varlagin; Huimin Wang; Junhua Yan; Guirui Yu; Junhui Zhang

Climatic variables not only directly affect the interannual variability (IAV) in net ecosystem exchange of CO2 (NEE) but also indirectly drive it by changing the physiological parameters. Identifying these direct and indirect paths can reveal the underlying mechanisms of carbon (C) dynamics. In this study, we applied a path analysis using flux data from 65 sites to quantify the direct and indirect climatic effects on IAV in NEE and to evaluate the potential relationships among the climatic variables and physiological parameters that represent physiology and phenology of ecosystems. We found that the maximum photosynthetic rate was the most important factor for the IAV in gross primary productivity (GPP), which was mainly induced by the variation in vapour pressure deficit. For ecosystem respiration (RE), the most important drivers were GPP and the reference respiratory rate. The biome type regulated the direct and indirect paths, with distinctive differences between forests and non-forests, evergreen needleleaf forests and deciduous broadleaf forests, and between grasslands and croplands. Different paths were also found among wet, moist and dry ecosystems. However, the climatic variables can only partly explain the IAV in physiological parameters, suggesting that the latter may also result from other biotic and disturbance factors. In addition, the climatic variables related to NEE were not necessarily the same as those related to GPP and RE, indicating the emerging difficulty encountered when studying the IAV in NEE. Overall, our results highlight the contribution of certain physiological parameters to the IAV in C fluxes and the importance of biome type and multi-year water conditions, which should receive more attention in future experimental and modelling research.


Journal of Geographical Sciences | 2016

Spatial variation in annual actual evapotranspiration of terrestrial ecosystems in China: Results from eddy covariance measurements

Han Zheng; Guirui Yu; Qiufeng Wang; Xianjin Zhu; Honglin He; Yanfen Wang; Junhui Zhang; Yingnian Li; Liang Zhao; Fenghua Zhao; Peili Shi; Huimin Wang; Junhua Yan; Yiping Zhang

Understanding the spatial variation in annual actual evapotranspiration (AET) and its influencing factors is crucial for a better understanding of hydrological processes and water resources management. By synthesizing ecosystem-level observations of eddy-covariance flux sites in China (a total of 61 sites), we constructed the most complete AET dataset in China up to now. Based on this dataset, we quantified the statistic characteristics of AET and water budgets (defined as the ratio of AET to annual mean precipitation (MAP), AET/MAP) of terrestrial ecosystems in China. Results showed that AET differed significantly among both different vegetation types and climate types in China, with overall mean AET of 534.7±232.8 mm yr-1. AET/MAP also differed significantly among different climate types, but there were no distinct differences in AET/MAP values across vegetation types, with mean AET/MAP of 0.82±0.28 for non-irrigated ecosystems. We further investigated how the main climatic factors and vegetation attributes control the spatial variation in AET. Our findings revealed that the spatial variation of AET in China was closely correlated with the geographical patterns of climate and vegetation, in which the effects of total annual net radiation (Rn), MAP and mean annual air temperature (MAT) were dominant. Thus, we proposed an empirical equation to describe the spatial patterns of AET in China, which could explain about 84% of the spatial variation in AET of terrestrial ecosystems in China. Based on the constructed dataset, we also evaluated the uncertainties of five published global evapotranspiration products in simulating site-specific AET in China. Results showed that large biases in site-specific AET values existed for all five global evapotranspiration products, which indicated that it is necessary to involve more observation data of China in their parameterization or validation, while our AET dataset would provide a data source for it.


Chinese Science Bulletin | 2005

Diurnal and monthly variations of carbon dioxide flux in an alpine shrub on the Qinghai-Tibet Plateau

Shixiao Xu; Xinquan Zhao; Yingnian Li; Liang Zhao; Guirui Yu; Xiaomin Sun; Guangmin Cao

Continuous CO2 flux observation with eddy covariance method conducted in the alpine shrub on the Qinghai-Tibet Plateau indicates that there are distinct diurnal and monthly variations for CO2 fluxes in the alpine shrub on the plateau. As for diurnal variation, with net CO2 influx from 08:00 to 19:00 and net CO2 efflux from 20:00 to 07:00, peak CO2 flux during warm season (July) appears around 12:00 (−1.19 g CO2 · m−2 · h−1); there is no obvious horary fluctuation for CO2 flux during cold season (January), and horary CO2 flux during most hours in a day is close to zero except for a small amount of net efflux (about 0.11 g CO2 · m−2 · h−1) from 11:00–17:00. As for monthly variation, with net CO2 influx from June to September and net CO2 efflux from January to May and October to December, the peak monthly CO2 influx and CO2 efflux appear in August and April, respectively. The total net CO2 influx from June to September and total net CO2 efflux from February to May and October to December in the alpine shrub on the Qinghai-Tibet Plateau are estimated to be 673 and 446 g CO2 · m−2. Results show that the alpine shrub on the Qinghai-Tibet Plateau is remarkable carbon dioxide sink under no grazing conditions and the total yearly CO2 influx is estimated to be 227 g CO2 · m−2.


Scientific Reports | 2017

Grassland restoration reduces water yield in the headstream region of Yangtze River

Jia Li; Dan Liu; Tao Wang; Yingnian Li; Shiping Wang; Yuting Yang; Xiaoyi Wang; Hui Guo; Shushi Peng; Jinzhi Ding; Miaogen Shen; Lei Wang

Large–scale ecological restoration programs are considered as one of the key strategies to enhance ecosystem services. The Headstream region of Yangtze River (HYZR), which is claimed to be China’s Water Tower but witnessed the rapid grassland deterioration during 1970s–2000, has seen a series of grassland restoration programs since 2000. But few studies have thoroughly estimated the hydrological effect of this recent grassland restoration. Here we show that restoration significantly reduces growing-season water yield coefficient (WYC) from 0.37 ± 0.07 during 1982–1999 to 0.24 ± 0.07 during 2000–2012. Increased evapotranspiration (ET) is identified as the main driver for the observed decline in WYC. After factoring out climate change effects, vegetation restoration reduces streamflow by 9.75 ± 0.48 mm from the period 1982–1999 to the period 2000–2012, amounting to 16.4 ± 0. 80% of climatological growing-season streamflow. In contrary to water yield, restoration is conducive to soil water retention – an argument that is supported by long-term in-situ grazing exclusion experiment. Grassland restoration therefore improves local soil water conditions but undercuts gain in downstream water resources associated with precipitation increases.

Collaboration


Dive into the Yingnian Li's collaboration.

Top Co-Authors

Avatar

Guirui Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingyuan Du

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Peili Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junhua Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanhong Tang

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Huimin Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinquan Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanfen Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Song Gu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge