Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingqun Zhou is active.

Publication


Featured researches published by Yingqun Zhou.


PLOS ONE | 2012

Salinomycin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells In Vitro and In Vivo

Fan Wang; Lei He; Weiqi Dai; Yaping Xu; Dong Hui Wu; Chunlei Lin; Shu-Mei Wu; Ping Cheng; Yan Liang Zhang; Miao Shen; Chen-Feng Wang; Jie Lu; Yingqun Zhou; Xuan-Fu Xu; Ling Xu; Chuanyong Guo

The anti-tumor antibiotic salinomycin (Sal) was recently identified as a selective inhibitor of breast cancer stem cells; however, the effect of Sal on hepatocellular carcinoma (HCC) is not clear. This study aimed to determine the anti-tumor efficacy and mechanism of Sal on HCC. HCC cell lines (HepG2, SMMC-7721, and BEL-7402) were treated with Sal. Cell doubling time was determinated by drawing growth curve, cell viability was evaluated using the Cell Counting Kit 8. The fraction of CD133+ cell subpopulations was assessed by flow cytometry. We found that Sal inhibits proliferation and decreases PCNA levels as well as the proportion of HCC CD133+cell subpopulations in HCC cells. Cell cycle was analyzed using flow cytometry and showed that Sal caused cell cycle arrest of the various HCC cell lines in different phases. Cell apoptosis was evaluated using flow cytometry and Hoechst 33342 staining. Sal induced apoptosis as characterized by an increase in the Bax/Bcl-2 ratio. Several signaling pathways were selected for further mechanistic analyses using real time-PCR and Western blot assays. Compared to control, β-catenin expression is significantly down-regulated upon Sal addition. The Ca2+ concentration in HCC cells was examined by flow cytometry and higher Ca2+ concentrations were observed in Sal treatment groups. The anti-tumor effect of Sal was further verified in vivo using the hepatoma orthotopic tumor model and the data obtained showed that the size of liver tumors in Sal-treated groups decreased compared to controls. Immunohistochemistry and TUNEL staining also demonstrated that Sal inhibits proliferation and induces apoptosis in vivo. Finally, the role of Sal on in vivo Wnt/β-catenin signaling was evaluated by Western blot and immunohistochemistry. This study demonstrates Sal inhibits proliferation and induces apoptosis of HCC cells in vitro and in vivo and one potential mechanism is inhibition of Wnt/β-catenin signaling via increased intracellular Ca2+ levels.


Molecular Carcinogenesis | 2015

Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial–mesenchymal transition: Partial mediation by the transcription factor NFAT1

Weiqi Dai; Fan Wang; Lei He; Chunlei Lin; Shu-Mei Wu; Ping Chen; Yan Zhang; Miao Shen; Dong Wu; Chengfen Wang; Jie Lu; Yingqun Zhou; Xuan-Fu Xu; Ling Xu; Chuanyong Guo

To investigate the effects and mechanism of genistein on hepatocellular carcinoma. Cell counting kit‐8 assays showed that genistein at 3, 6, and 9 µM had no significant cytotoxic effects on HepG2, SMMC‐7721, and Bel‐7402 cells. Cell scratch and Transwell assays identified that genistein inhibited migration of three cell lines. In three cell lines, genistein enhanced E‐cadherin and α‐catenin, but reduced N‐cadherin and Vimentin at both mRNA and protein levels in a dose‐dependent manner. Simultaneously, treatment with genistein suppressed epithelial–mesenchymal transition (EMT) induced by TGF‐β. In HepG2 cells, genistein reduced mRNA, and protein expressions of nuclear factor of activated T cells 1 (NFAT1), Abca3, Autotaxin, CD154, and Cox‐2. Phorbol 12‐myristate 13‐acetate (PMA) and ionomycin enhanced activity of NFAT1, reduced E‐cadherin and α‐catenin protein levels, and increased protein levels of N‐cadherin and Vimentin. Transwell demonstrated that PMA and ionomycin reversed the migration inhibitory effects of genistein on HepG2 cells. In vivo, genistein inhibited the intrahepatic metastasis by reversing the EMT, which was correlated with reduced NFAT1. Genistein inhibited hepatocellular carcinoma cell migration by reversing the EMT, which was partly mediated by NFAT1. The fact that EMT can be reversed by genistein may shed light on the possible mechanisms for its role in liver cancer therapy.


Mediators of Inflammation | 2013

Protective Effects of Necrostatin-1 against Concanavalin A-Induced Acute Hepatic Injury in Mice

Yingqun Zhou; Weiqi Dai; Chunlei Lin; Fan Wang; Lei He; Miao Shen; Ping Chen; Chenfen Wang; Jie Lu; Ling Xu; Xuan-Fu Xu; Chuanyong Guo

Objective. Necrostatin-1 (Nec-1) inhibits receptor-interacting protein 1 (RIP1) kinase and programmed necrosis. This study was designed to examine the protective effects and mechanisms of Nec-1 in concanavalin A- (ConA-) induced hepatitis in mice. Methods. C57BL/6 mice were exposed to ConA via tail vein injection and injected intraperitoneally with Nec-1 or vehicle. Levels of serum liver enzymes and histopathology were determined. Levels of inflammatory cytokines with ConA-induced hepatitis were determined with real-time polymerase chain reaction (real-time PCR). The expression of TNF-α, RIP1, and LC3 was detected with immunohistochemical staining. The expression of TNF-α, IFN-γ, IL2, IL6, caspase 3, RIP1, beclin-1, and LC3 protein was assessed by immunofluorescence and western blotting. Autophagosomes were observed with transmission electron microscopy (TEM). Results. Amelioration in liver functions and histopathological changes and the suppression of inflammatory cytokine production were observed in Nec-1-injected mice. Western blotting analysis showed that the expression of TNF-α, IFN-γ, IL2, IL6, and RIP1 was significantly reduced in the Nec-1-injected mice, which was confirmed by immunofluorescence and immunohistochemistry. Autophagosome formation was significantly reduced by Nec-1 treatment, as the expression of beclin-1 and LC3, determined with immunofluorescence and western blotting. Conclusion. These results demonstrate that Nec-1 prevents ConA-induced liver injury via RIP1-related and autophagy-related pathways.


World Journal of Gastroenterology | 2014

Meta-analysis of the efficacy of probiotics in Helicobacter pylori eradication therapy

Rong Zhu; Kan Chen; Yuanyuan Zheng; Hua-Wei Zhang; Junshan Wang; Yujing Xia; Wei-Qi Dai; Fan Wang; Miao Shen; Ping Cheng; Yan Zhang; Chengfen Wang; Jing Yang; Jingjing Li; Jie Lu; Yingqun Zhou; Chuan-Yong Guo

AIM To evaluate the role of probiotics in the standard triple Helicobacter pylori therapy. METHODS In this meta-analysis, we investigated the efficacy of probiotics in a standard triple H. pylori therapy in adults. Searches were mainly conducted in MEDLINE/PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials. Fourteen studies met our criteria, and the quality of these studies was assessed using the Jadad scale. We used STATA version 12.0 to extract data and to calculate the odds ratios (ORs), which are presented with the corresponding 95% confidence intervals (CIs). The data are presented as forest plots. RESULTS The pooled ORs for the eradication rates calculated by intention-to-treat analysis and per-protocol analysis in the probiotic group vs the control group were 1.67 (95%CI: 1.38-2.02) and 1.68 (95%CI: 1.35-2.08), respectively, using the fixed-effects model. The sensitivity of the Asian studies was greater than that of the Caucasian studies (Asian: OR = 1.78, 95%CI: 1.40-2.26; Caucasian: OR = 1.48, 95%CI: 1.06-2.05). The pooled OR for the incidence of total adverse effects was significantly lower in the probiotic group (OR = 0.49, 95%CI: 0.26-0.94), using the random effects model, with significant heterogeneity (I (2) = 85.7%). The incidence of diarrhea was significantly reduced in the probiotic group (OR = 0.21, 95%CI: 0.06-0.74), whereas the incidence of taste disorders, metallic taste, vomiting, nausea, and epigastric pain did not differ significantly between the probiotic group and the control group. CONCLUSION Supplementary probiotic preparations during standard triple H. pylori therapy may improve the eradication rate, particularly in Asian patients, and the incidence of total adverse effects.


Mediators of Inflammation | 2014

Protective effect of astaxanthin on liver fibrosis through modulation of TGF-β1 expression and autophagy.

Miao Shen; Kan Chen; Jie Lu; Ping Cheng; Ling Xu; Weiqi Dai; Fan Wang; Lei He; Yan Zhang; Wang Chengfen; Jingjing Li; Jing Yang; Rong Zhu; Huawei Zhang; Yuanyuan Zheng; Yingqun Zhou; Chuanyong Guo

Liver fibrosis is a common pathway leading to cirrhosis and a worldwide clinical issue. Astaxanthin is a red carotenoid pigment with antioxidant, anticancer, and anti-inflammatory properties. The aim of this study was to investigate the effect of astaxanthin on liver fibrosis and its potential protective mechanisms. Liver fibrosis was induced in a mouse model using CCL4 (intraperitoneal injection, three times a week for 8 weeks), and astaxanthin was administered everyday at three doses (20, 40, and 80 mg/kg). Pathological results indicated that astaxanthin significantly improved the pathological lesions of liver fibrosis. The levels of alanine aminotransferase aspartate aminotransferase and hydroxyproline were also significantly decreased by astaxanthin. The same results were confirmed in bile duct liagtion, (BDL) model. In addition, astaxanthin inhibited hepatic stellate cells (HSCs) activation and formation of extracellular matrix (ECM) by decreasing the expression of NF-κB and TGF-β1 and maintaining the balance between MMP2 and TIMP1. In addition, astaxanthin reduced energy production in HSCs by downregulating the level of autophagy. These results were simultaneously confirmed in vivo and in vitro. In conclusion, our study showed that 80 mg/kg astaxanthin had a significant protective effect on liver fibrosis by suppressing multiple profibrogenic factors.


Marine Drugs | 2015

Astaxanthin Pretreatment Attenuates Hepatic Ischemia Reperfusion-Induced Apoptosis and Autophagy via the ROS/MAPK Pathway in Mice.

Jingjing Li; Fan Wang; Yujing Xia; Weiqi Dai; Kan Chen; Sainan Li; Tong Liu; Yuanyuan Zheng; Jianrong Wang; Wenxia Lu; Yuqing Zhou; Qin Yin; Jie Lu; Yingqun Zhou; Chuanyong Guo

Background: Hepatic ischemia reperfusion (IR) is an important issue in complex liver resection and liver transplantation. The aim of the present study was to determine the protective effect of astaxanthin (ASX), an antioxidant, on hepatic IR injury via the reactive oxygen species/mitogen-activated protein kinase (ROS/MAPK) pathway. Methods: Mice were randomized into a sham, IR, ASX or IR + ASX group. The mice received ASX at different doses (30 mg/kg or 60 mg/kg) for 14 days. Serum and tissue samples at 2 h, 8 h and 24 h after abdominal surgery were collected to assess alanine aminotransferase (ALT), aspartate aminotransferase (AST), inflammation factors, ROS, and key proteins in the MAPK family. Results: ASX reduced the release of ROS and cytokines leading to inhibition of apoptosis and autophagy via down-regulation of the activated phosphorylation of related proteins in the MAPK family, such as P38 MAPK, JNK and ERK in this model of hepatic IR injury. Conclusion: Apoptosis and autophagy caused by hepatic IR injury were inhibited by ASX following a reduction in the release of ROS and inflammatory cytokines, and the relationship between the two may be associated with the inactivation of the MAPK family.


PLOS ONE | 2014

N-acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via regulation of the ROS/JNK/Bcl-2 pathway.

Chengfen Wang; Kan Chen; Yujing Xia; Weiqi Dai; Fan Wang; Miao Shen; Ping Cheng; Junshan Wang; Jie Lu; Yan Zhang; Jing Yang; Rong Zhu; Huawei Zhang; Jingjing Li; Yuanyuan Zheng; Yingqun Zhou; Chuanyong Guo

Background Hepatic ischemia–reperfusion injury (HIRI) remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC) has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS) and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved. Methods A mouse model of segmental (70%) hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg), a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM). Results We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice. Conclusion NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2.


PLOS ONE | 2014

Sonic Hedgehog-Gli1 Signaling Pathway Regulates the Epithelial Mesenchymal Transition (EMT) by Mediating a New Target Gene, S100A4, in Pancreatic Cancer Cells

Xuan-Fu Xu; Bin Su; Chuangao Xie; Shumei Wei; Yingqun Zhou; Hua Liu; Weiqi Dai; Ping Cheng; Fan Wang; Xiaorong Xu; Chuanyong Guo

Aims The hedgehog signaling pathway plays an important role in EMT of pancreatic cancer cells, but the precise mechanisms remain elusive. Because S100A4 as a key EMT moleculer marker was found to be upregulated upon Gli1 in pancreatic cancer cells, we focused on the relationship between Shh-Gli1 signals and S100 genes family. Methods On the base of cDNA microarray data, we investigated regulating mechanism of Gli1 to some members of S100A genes family in pancreatic cancer cell lines firstly. Then, the regulation of Gli1 to S100A4 gene was studied by molecular biology assays and the pro-metastasis effection of Gli1-dependent S100A4 was investigated in vitro. Finally, the expressions of Shh, Gli1, S100A4 and E-cadherin in pancreatic cancer tissues were studied by using immunohistochemistry assays. Results Five members of the S100 genes family, S100A2, S100A4, S100A6, S100A11, and S100A14 were found to be downregulated significantly upon Gli1 knockdown. Gli1 enhancer prediction combining with in vitro data demonstrated that Gli1 primarily regulates S100A family members via cis-acting elements. Indeed, the data indicate S100A4 and vimentin genes were upregulated significantly by Shh/Gli1-expression increasing and E-cadherin was significantly reduced at the same time. Migration of PC cells was increased significantly in a dose-dependent manner of Gli1 expression (P<0.05) and siS100A4 significantly reversed the response of PC cells induced by L-Shh transduction (P<0.01). Conclusion Our data establish a novel connection between Shh-Gli1 signaling and S100A4 regulation, which imply that S100A4 might be one of the key factors in EMT mediated by Shh-Gli1 signaling in pancreatic cancer.


PLOS ONE | 2012

Genome-wide screening reveals an EMT molecular network mediated by Sonic hedgehog-Gli1 signaling in pancreatic cancer cells.

Xuan-Fu Xu; Yingqun Zhou; Chuangao Xie; Shu-mei Wei; Huizhong Gan; Shengli He; Fan Wang; Ling Xu; Jie Lu; Weiqi Dai; Lei He; Ping Chen; Xingpeng Wang; Chuanyong Guo

Aims The role of sonic hedgehog (SHH) in epithelial mesenchymal transition (EMT) of pancreatic cancer (PC) is known, however, its mechanism is unclear. Because SHH promotes tumor development predominantly through Gli1, we sought to understand its mechanism by identifying Gli1 targets in pancreatic cancer cells. Methods First, we investigated invasion, migration, and EMT in PC cells transfected with lentiviral Gli1 interference vectors or SHH over-expression vectors in vitro and in vivo. Next, we determined the target gene profiles of Gli1 in PC cells using cDNA microarray assays. Finally, the primary regulatory networks downstream of SHH-Gli1 signaling in PC cells were studied through functional analyses of these targets. Results Our results indicate there is decreased E-cadherin expression upon increased expression of SHH/Gli1. Migration of PC cells increased significantly in a dose-dependent manner within 24 hours of Gli1 expression (P<0.05). The ratio of liver metastasis and intrasplenic miniature metastasis increased markedly upon activation of SHH-Gli1 signals in nude mice. Using cDNA microarray, we identified 278 upregulated and 59 downregulated genes upon Gli1 expression in AsPC-1 cells. The data indicate that SHH-Gli1 signals promote EMT by mediating a complex signaling network including TGFβ, Ras, Wnt, growth factors, PI3K/AKT, integrins, transmembrane 4 superfamily (TM4SF), and S100A4. Conclusion Our results suggest that targeting the molecular connections established between SHH-Gli1 signaling and EMT could provide effective therapies for PC.


Mediators of Inflammation | 2014

Hydrogen Sulfide Ameliorates Ischemia/Reperfusion-Induced Hepatitis by Inhibiting Apoptosis and Autophagy Pathways

Ping Cheng; Fan Wang; Kan Chen; Miao Shen; Weiqi Dai; Ling Xu; Yan Zhang; Chengfen Wang; Jingjing Li; Jing Yang; Rong Zhu; Huawei Zhang; Yuanyuan Zheng; Jie Lu; Yingqun Zhou; Chuanyong Guo

Background. Hepatic ischemia/reperfusion (I/R) injury is an important clinical problem, and its consequences can seriously threaten human health. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Hydrogen sulfide (H2S) is the third most common endogenously produced gaseous signaling molecule and is known to exert a protective effect against hepatic I/R injury. In this study, the purpose is to explore both the effect and mechanism of H2S on hepatic I/R injury. Methods. Balb/c mice were randomized into Sham, I/R, or two doses (14 μmol/kg and 28 μmol/kg) of sodium hydrosulfide (NaHS, an H2S donor) preconditioning groups. Results. NaHS significantly reduced the levels of TNF-α and IL-6 at 12 h and 24 h after injection compared with ischemia/reperfusion challenge alone. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play important roles in the regulation of the apoptosis and autophagy pathways, was also clearly affected by NaHS. Furthermore, NaHS affected the p-JNK1, p-ERK1, and p-p38. Conclusion. Our results indicate that H2S attenuates hepatic I/R injury, at least in part, by regulating apoptosis through inhibiting JNK1 signaling. The autophagy agonist rapamycin potentiated this hepatoprotective effect by reversing the inhibition of autophagy by H2S.

Collaboration


Dive into the Yingqun Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge