Yingzhen Kong
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yingzhen Kong.
BMC Plant Biology | 2010
Ruibo Hu; Guang Qi; Yingzhen Kong; Dejing Kong; Qian Gao; Gongke Zhou
BackgroundNAC (NAM, ATAF1/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, conserved motifs, and expression profiling analysis has been presented thus far for the model tree species Populus.ResultsIn the present study, a comprehensive analysis of NAC gene family in Populus was performed. A total of 163 full-length NAC genes were identified in Populus, and they were phylogeneticly clustered into 18 distinct subfamilies. The gene structure and motif compositions were considerably conserved among the subfamilies. The distributions of 120 Populus NAC genes were non-random across the 19 linkage groups (LGs), and 87 genes (73%) were preferentially retained duplicates that located in both duplicated regions. The majority of NACs showed specific temporal and spatial expression patterns based on EST frequency and microarray data analyses. However, the expression patterns of a majority of duplicate genes were partially redundant, suggesting the occurrence of subfunctionalization during subsequent evolutionary process. Furthermore, quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the tissue-specific expression patterns of 25 NAC genes.ConclusionBased on the genomic organizations, we can conclude that segmental duplications contribute significantly to the expansion of Populus NAC gene family. The comprehensive expression profiles analysis provides first insights into the functional divergence among members in NAC gene family. In addition, the high divergence rate of expression patterns after segmental duplications indicates that NAC genes in Populus are likewise to have been retained by substantial subfunctionalization. Taken together, our results presented here would be helpful in laying the foundation for functional characterization of NAC gene family and further gaining an understanding of the structure-function relationship between these family members.
PLOS ONE | 2012
Ruibo Hu; Xiaoyuan Chi; Guohua Chai; Yingzhen Kong; Guo He; Xiaoyu Wang; Dachuan Shi; Dongyuan Zhang; Gongke Zhou
Background Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I–IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles.
BMC Genomics | 2012
Guohua Chai; Ruibo Hu; Dongyuan Zhang; Guang Qi; Ran Zuo; Yingping Cao; Peng Chen; Yingzhen Kong; Gongke Zhou
BackgroundCCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date.ResultsIn the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X11-C-X6-C-X3-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and responses to drought stress treatment of 12 selected Populus CCCH genes.ConclusionsThis study provides the first systematic analysis of the Populus CCCH proteins. Comprehensive genomic analyses suggested that segmental duplications contribute significantly to the expansion of Populus CCCH gene family. Transcriptome profiling provides first insights into the functional divergences among members of Populus CCCH gene family. Particularly, some CCCH genes may be involved in wood development while others in drought tolerance regulation. Our results presented here may provide a starting point for the functional dissection of this family of potential RNA-binding proteins.
Molecular Biology Reports | 2013
Ran Zuo; Ruibo Hu; Guohua Chai; Meiling Xu; Guang Qi; Yingzhen Kong; Gongke Zhou
Calcium-dependent protein kinases (CDPKs) are Ca2+-binding proteins known to play crucial roles in Ca2+ signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.
Plant Physiology | 2014
Li Yu; Dachuan Shi; Junling Li; Yingzhen Kong; Yanchong Yu; Guohua Chai; Ruibo Hu; Juan Wang; Michael G. Hahn; Gongke Zhou
Disruption of a glucomannan synthase alters cellulose crystallinity and spatial distribution, yielding thinner adherent mucilage with increased density in seeds of Arabidopsis. Mannans are hemicellulosic polysaccharides that are considered to have both structural and storage functions in the plant cell wall. However, it is not yet known how mannans function in Arabidopsis (Arabidopsis thaliana) seed mucilage. In this study, CELLULOSE SYNTHASE-LIKE A2 (CSLA2; At5g22740) expression was observed in several seed tissues, including the epidermal cells of developing seed coats. Disruption of CSLA2 resulted in thinner adherent mucilage halos, although the total amount of the adherent mucilage did not change compared with the wild type. This suggested that the adherent mucilage in the mutant was more compact compared with that of the wild type. In accordance with the role of CSLA2 in glucomannan synthesis, csla2-1 mucilage contained 30% less mannosyl and glucosyl content than did the wild type. No appreciable changes in the composition, structure, or macromolecular properties were observed for nonmannan polysaccharides in mutant mucilage. Biochemical analysis revealed that cellulose crystallinity was substantially reduced in csla2-1 mucilage; this was supported by the removal of most mucilage cellulose through treatment of csla2-1 seeds with endo-β-glucanase. Mutation in CSLA2 also resulted in altered spatial distribution of cellulose and an absence of birefringent cellulose microfibrils within the adherent mucilage. As with the observed changes in crystalline cellulose, the spatial distribution of pectin was also modified in csla2-1 mucilage. Taken together, our results demonstrate that glucomannans synthesized by CSLA2 are involved in modulating the structure of adherent mucilage, potentially through altering cellulose organization and crystallization.
The Plant Cell | 2012
Maria J. Peña; Yingzhen Kong; William S. York; Malcolm A. O’Neill
A unique galacturonic acidic–containing xyloglucan was identified in Arabidopsis root hair cell walls and characterized using genetic, biochemical, and chemical methods. Plants with a null mutation in a gene encoding a GT47 glycosyltransferase synthesize xyloglucan that lacks galacturonic acid and have short root hairs. These findings highlight a key role for acidic xyloglucan in root hair growth. Root hairs provide a model system to study plant cell growth, yet little is known about the polysaccharide compositions of their walls or the role of these polysaccharides in wall expansion. We report that Arabidopsis thaliana root hair walls contain a previously unidentified xyloglucan that is composed of both neutral and galacturonic acid–containing subunits, the latter containing the β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→ and/or α-l-fucosyl-(1→2)-β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→) side chains. Arabidopsis mutants lacking root hairs have no acidic xyloglucan. A loss-of-function mutation in At1g63450, a root hair–specific gene encoding a family GT47 glycosyltransferase, results in the synthesis of xyloglucan that lacks galacturonic acid. The root hairs of this mutant are shorter than those of the wild type. This mutant phenotype and the absence of galacturonic acid in the root xyloglucan are complemented by At1g63450. The leaf and stem cell walls of wild-type Arabidopsis contain no acidic xyloglucan. However, overexpression of At1g63450 led to the synthesis of galacturonic acid–containing xyloglucan in these tissues. We propose that At1g63450 encodes XYLOGLUCAN-SPECIFIC GALACTURONOSYLTRANSFERASE1, which catalyzes the formation of the galactosyluronic acid-(1→2)-α-d-xylopyranosyl linkage and that the acidic xyloglucan is present only in root hair cell walls. The role of the acidic xyloglucan in root hair tip growth is discussed.
Plant Physiology | 2011
Yingzhen Kong; Gongke Zhou; Yanbin Yin; Ying Xu; Sivakumar Pattathil; Michael G. Hahn
We are studying a Galacturonosyltransferase-Like (GATL) gene family in Arabidopsis (Arabidopsis thaliana) that was identified bioinformatically as being closely related to a group of 15 genes (Galacturonosyltransferase1 [GAUT1] to -15), one of which (GAUT1) has been shown to encode a functional galacturonosyltransferase. Here, we describe the phylogeny, gene structure, evolutionary history, genomic organization, protein topology, and expression pattern of this gene family in Arabidopsis. Expression studies (reverse transcription-polymerase chain reaction) demonstrate that all 10 AtGATL genes are transcribed, albeit to varying degrees, in Arabidopsis tissues. Promoter::β-glucuronidase expression studies show that individual AtGATL gene family members have both overlapping and unique expression patterns. Nine of the 10 AtGATL genes are expressed in all major plant organs, although not always in all cell types of those organs. AtGATL4 expression appears to be confined to pollen grains. Most of the AtGATL genes are expressed strongly in vascular tissue in both the stem and hypocotyl. Subcellular localization studies of several GATL proteins using yellow fluorescent protein tagging provide evidence supporting the Golgi localization of these proteins. Plants carrying T-DNA insertions in three AtGATL genes (atgatl3, atgatl6, and atgatl9) have reduced amounts of GalA in their stem cell walls. The xylose content increased in atgatl3 and atgatl6 stem walls. Glycome profiling of cell wall fractions from these mutants using a toolkit of diverse plant glycan-directed monoclonal antibodies showed that the mutations affect both pectins and hemicelluloses and alter overall wall structure, as indicated by altered epitope extractability patterns. The data presented suggest that the AtGATL genes encode proteins involved in cell wall biosynthesis, but their precise roles in wall biosynthesis remain to be substantiated.
Plant Physiology | 2015
Yingzhen Kong; Maria J. Peña; Luciana Renna; Utku Avci; Sivakumar Pattathil; Sami T. Tuomivaara; Xuemei Li; Wolf-Dieter Reiter; Federica Brandizzi; Michael G. Hahn; Alan G. Darvill; William S. York; Malcolm A. O’Neill
Depleting galactose from the cell wall polysaccharide xyloglucan leads to a disruption of diverse cellular and physiological processes involved in normal plant growth. Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes.
Molecular Plant | 2009
Yingzhen Kong; Gongke Zhou; Utku Avci; Xiaogang Gu; Chelsea Jones; Yanbin Yin; Ying Xu; Michael G. Hahn
Several genes in Arabidopsis, including PARVUS/AtGATL1, have been implicated in xylan synthesis. However, the biosynthesis of xylan in woody plants, where this polysaccharide is a major component of wood, is poorly understood. Here, we characterize two Populus genes, PdGATL1.1 and PdGATL1.2, the closest orthologs to the Arabidopsis PARVUS/GATL1 gene, with respect to their gene expression in poplar, their sub-cellular localization, and their ability to complement the parvus mutation in Arabidopsis. Overexpression of the two poplar genes in the parvus mutant rescued most of the defects caused by the parvus mutation, including morphological changes, collapsed xylem, and altered cell wall monosaccharide composition. Quantitative RT-PCR showed that PdGATL1.1 is expressed most strongly in developing xylem of poplar. In contrast, PdGATL1.2 is expressed much more uniformly in leaf, shoot tip, cortex, phloem, and xylem, and the transcript level of PdGATL1.2 is much lower than that of PdGATL1.1 in all tissues examined. Sub-cellular localization experiments showed that these two proteins are localized to both ER and Golgi in comparison with marker proteins resident to these sub-cellular compartments. Our data indicate that PdGATL1.1 and PdGATL1.2 are functional orthologs of PARVUS/GATL1 and can play a role in xylan synthesis, but may also have role(s) in the synthesis of other wall polymers.
Journal of Experimental Botany | 2014
Guohua Chai; Zengguang Wang; Xianfeng Tang; Li Yu; Guang Qi; Dian Wang; Xiaofei Yan; Yingzhen Kong; Gongke Zhou
In plants, the R2R3-MYB gene family contains many pairs of paralogous genes, which play the diverse roles in developmental processes and environmental responses. The paper reports the characterization of 81 pairs of Populus R2R3-MYB genes. Chromosome placement, phylogenetic, and motif structure analyses showed that these gene pairs resulted from multiple types of gene duplications and had five different gene fates. Tissue expression patterns revealed that most duplicated genes were specifically expressed in the tissues examined. qRT-PCR confirmed that nine pairs were highly expressed in xylem, of which three pairs (PdMYB10/128, PdMYB90/167, and PdMYB92/125) were further functionally characterized. The six PdMYBs were localized to the nucleus and had transcriptional activities in yeast. The heterologous expression of PdMYB10 and 128 in Arabidopsis increased stem fibre cell-wall thickness and delayed flowering. In contrast, overexpression of PdMYB90, 167, 92, and 125 in Arabidopsis decreased stem fibre and vessel cell-wall thickness and promoted flowering. Cellulose, xylose, and lignin contents were changed in overexpression plants. The expression levels of several genes involved in secondary wall formation and flowering were affected by the overexpression of the six PdMYBs in Arabidopsis. This study addresses the diversity of gene duplications in Populus R2R3-MYBs and the roles of these six genes in secondary wall formation and flowering control.