Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yinna Wang is active.

Publication


Featured researches published by Yinna Wang.


American Journal of Transplantation | 2008

Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury.

Bettina M. Buchholz; David J. Kaczorowski; Ryujiro Sugimoto; R. Yang; Yinna Wang; Timothy R. Billiar; Kenneth R. McCurry; Anthony J. Bauer; Atsunori Nakao

Ischemia/reperfusion (I/R) injury during small intestinal transplantation (SITx) frequently causes complications including dysmotility, inflammation and organ failure. Recent evidence indicates hydrogen inhalation eliminates toxic hydroxyl radicals. Syngeneic, orthotopic SITx was performed in Lewis rats with 3 h of cold ischemic time. Both donor and recipient received perioperative air or 2% hydrogen inhalation. SITx caused a delay in gastrointestinal transit and decreased jejunal circular muscle contractile activity 24 h after surgery. Hydrogen treatment resulted in significantly improved gastrointestinal transit, as well as jejunal smooth muscle contractility in response to bethanechol. The transplant induced upregulation in the inflammatory mediators CCL2, IL‐1β, IL‐6 and TNF‐α were mitigated by hydrogen. Hydrogen significantly diminished lipid peroxidation compared to elevated tissue malondialdehyde levels in air‐treated grafts demonstrating an antioxidant effect. Histopathological mucosal erosion and increased gut permeability indicated a breakdown in posttransplant mucosal barrier function which was significantly attenuated by hydrogen treatment. In recipient lung, hydrogen treatment also resulted in a significant abatement in inflammatory mRNA induction and reduced neutrophil recruitment. Hydrogen inhalation significantly ameliorates intestinal transplant injury and prevents remote organ inflammation via its antioxidant effects. Administration of perioperative hydrogen gas may be a potent and clinically applicable therapeutic strategy for intestinal I/R injury.


Kidney International | 2010

Oral hydrogen water prevents chronic allograft nephropathy in rats

Jon Cardinal; J. Zhan; Yinna Wang; Ryujiro Sugimoto; Allan Tsung; Kenneth R. McCurry; Timothy R. Billiar; Atsunori Nakao

Reactive oxygen species (ROS) contribute to the development of interstitial fibrosis and tubular atrophy seen in chronic allograft nephropathy (CAN). As molecular hydrogen gas can act as a scavenger of ROS, we tested the effect of treatment with hydrogen water (HW) in a model of kidney transplantation, in which allografts from Lewis rats were orthotopically transplanted into Brown Norway recipients that had undergone bilateral nephrectomy. Molecular hydrogen was dissolved in water and recipients were given HW from day 0 until day 150. Rats that were treated with regular water (RW) gradually developed proteinuria and their creatinine clearance declined, ultimately leading to graft failure secondary to CAN. In contrast, treatment with HW improved allograft function, slowed the progression of CAN, reduced oxidant injury and inflammatory mediator production, and improved overall survival. Inflammatory signaling pathways, such as mitogen-activated protein kinases, were less activated in renal allografts from HW-treated rats as compared with RW-treated rats. Hence, oral HW is an effective antioxidant and antiinflammatory agent that prevented CAN, improved survival of rat renal allografts, and may be of therapeutic value in the setting of transplantation.


Journal of Clinical Investigation | 2011

Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague-Dawley rats

Matthew J. Alef; Raghuveer Vallabhaneni; Evie H. Carchman; Sidney M. Morris; Sruti Shiva; Yinna Wang; Eric E. Kelley; Margaret M. Tarpey; Mark T. Gladwin; Edith Tzeng; Brian S. Zuckerbraun

Vascular disease, a significant cause of morbidity and mortality in the developed world, results from vascular injury. Following vascular injury, damaged or dysfunctional endothelial cells and activated SMCs engage in vasoproliferative remodeling and the formation of flow-limiting intimal hyperplasia (IH). We hypothesized that vascular injury results in decreased bioavailability of NO secondary to dysregulated arginine-dependent NO generation. Furthermore, we postulated that nitrite-dependent NO generation is augmented as an adaptive response to limit vascular injury/proliferation and can be harnessed for its protective effects. Here we report that sodium nitrite (intraperitoneal, inhaled, or oral) limited the development of IH in a rat model of vascular injury. Additionally, nitrite led to the generation of NO in vessels and SMCs, as well as limited SMC proliferation via p21Waf1/Cip1 signaling. These data demonstrate that IH is associated with increased arginase-1 levels, which leads to decreased NO production and bioavailability. Vascular injury also was associated with increased levels of xanthine oxidoreductase (XOR), a known nitrite reductase. Chronic inhibition of XOR and a diet deficient in nitrate/nitrite each exacerbated vascular injury. Moreover, established IH was reversed by dietary supplementation of nitrite. The vasoprotective effects of nitrite were counteracted by inhibition of XOR. These data illustrate the importance of nitrite-generated NO as an endogenous adaptive response and as a pathway that can be harnessed for therapeutic benefit.


Journal of Heart and Lung Transplantation | 2010

Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both

Atsunori Nakao; David J. Kaczorowski; Yinna Wang; Jon Cardinal; Bettina M. Buchholz; Ryujiro Sugimoto; Kimimasa Tobita; Sungsoo Lee; Yoshiya Toyoda; Timothy R. Billiar; Kenneth R. McCurry

BACKGROUND Recent advances in novel medical gases, including hydrogen and carbon monoxide (CO), have demonstrated significant opportunities for therapeutic use. This study was designed to evaluate the effects of inhaled hydrogen or CO, or both, on cold ischemia/reperfusion (I/R) injury of the myocardium. METHODS Syngeneic heterotopic heart transplantation was performed in rats after 6 or 18 hours of cold ischemia in Celsior solution. Survival, morphology, apoptosis and marker gene expression were assessed in the grafts after in vivo inhalation of hydrogen (1% to 3%), CO (50 to 250 ppm), both or neither. Both donors and recipients were treated for 1 hour before and 1 hour after reperfusion. RESULTS After 6-hour cold ischemia, inhalation of hydrogen (>2%) or CO (250 ppm) alone attenuated myocardial injury. Prolonged cold ischemia for 18 hours resulted in severe myocardial injury, and treatment with hydrogen or CO alone failed to demonstrate significant protection. Dual treatment with hydrogen and CO significantly attenuated I/R graft injury, reducing the infarcted area and decreasing in serum troponin I and creatine phosphokinase (CPK). Hydrogen treatment alone significantly reduced malondialdehyde levels and serum high-mobility group box 1 protein levels as compared with air-treated controls. In contrast, CO only marginally prevented lipid peroxidation, but it suppressed I/R-induced mRNA upregulation for several pro-inflammatory mediators and reduced graft apoptosis. CONCLUSIONS Combined therapy with hydrogen and CO demonstrated enhanced therapeutic efficacy via both anti-oxidant and anti-inflammatory mechanisms, and may be a clinically feasible approach for preventing cold I/R injury of the myocardium.


Annals of the New York Academy of Sciences | 2002

Mechanisms of Hepatoprotection by Nitric Oxide

Yinna Wang; Yoram Vodovotz; Peter K. M. Kim; Ruben Zamora; Timothy R. Billiar

Abstract: Nitric oxide (NO) exerts numerous antiapoptotic effects on hepatocytes in settings of inflammation and tissue damage. These actions of NO are modulated by a variety of mechanisms under both physiologic and pathologic conditions. Nitric oxide inhibits cell death or apoptosis by modulation of heat shock proteins, S‐nitrosylation of caspases at their catalytic site cysteine residue, triggering of the cGMP pathway, and prevention of mitochondrial dysfunction. Our preliminary studies also suggest that NO can modulate apoptosis‐related genes in a manner consistent with an antiapoptotic effect. This review focuses on these molecular mechanisms of cytoprotection by NO.


Free Radical Biology and Medicine | 2012

Nitrite activates AMP kinase to stimulate mitochondrial biogenesis independent of soluble guanylate cyclase

Li Mo; Yinna Wang; Lisa Geary; Catherine Corey; Matthew J. Alef; Donna Beer-Stolz; Brian S. Zuckerbraun; Sruti Shiva

Nitrite, a dietary constituent and endogenous signaling molecule, mediates a number of physiological responses including modulation of ischemia/reperfusion injury, glucose tolerance, and vascular remodeling. Although the exact molecular mechanisms underlying nitrites actions are unknown, the current paradigm suggests that these effects depend on the hypoxic reduction of nitrite to nitric oxide (NO). Mitochondrial biogenesis is a fundamental mechanism of cellular adaptation and repair. However, the effect of nitrite on mitochondrial number has not been explored. Herein, we report that nitrite stimulates mitochondrial biogenesis through a mechanism distinct from that of NO. We demonstrate that nitrite significantly increases cellular mitochondrial number by augmenting the activity of adenylate kinase, resulting in AMP kinase phosphorylation, downstream activation of sirtuin-1, and deacetylation of PGC1α, the master regulator of mitochondrial biogenesis. Unlike NO, nitrite-mediated biogenesis does not require the activation of soluble guanylate cyclase and results in the synthesis of more functionally efficient mitochondria. Further, we provide evidence that nitrite mediates biogenesis in vivo. In a rat model of carotid injury, 2 weeks of continuous oral nitrite treatment postinjury prevented the hyperproliferative response of smooth muscle cells. This protection was accompanied by a nitrite-dependent upregulation of PGC1α and increased mitochondrial number in the injured artery. These data are the first to demonstrate that nitrite mediates differential signaling compared to NO. They show that nitrite is a versatile regulator of mitochondrial function and number both in vivo and in vitro and suggest that nitrite-mediated biogenesis may play a protective role in the setting of vascular injury.


The Journal of Thoracic and Cardiovascular Surgery | 2008

Carbon monoxide-saturated preservation solution protects lung grafts from ischemia-reperfusion injury

Junichi Kohmoto; Atsunori Nakao; Ryujiro Sugimoto; Yinna Wang; J. Zhan; Hideo Ueda; Kenneth R. McCurry

OBJECTIVES In previous work we have demonstrated that delivery of low concentrations (250 ppm) of carbon monoxide by means of inhalation to donors, recipients, or both protects transplanted lungs from ischemia-reperfusion injury (improved gas exchange, diminished intragraft and systemic inflammation, and retention of graft vascular endothelial cell ultrastructure). In this study we examined whether delivery of carbon monoxide to lung grafts in the preservation solution could protect against lung ischemia-reperfusion injury. METHODS Orthotopic left lung transplantation was performed in syngeneic Lewis to Lewis rats. Grafts were preserved in University of Wisconsin solution with or without (control solution) carbon monoxide at 4 degrees C for 6 hours. Carbon monoxide gas (5% or 100%) was bubbled into University of Wisconsin solution at 4 degrees C for 5 minutes before use. RESULTS In control animals, ischemia-reperfusion injury resulted in significant deterioration of graft function and was associated with a massive cellular infiltrate 2 hours after reperfusion. Grafts stored in University of Wisconsin solution with carbon monoxide (5%), however, demonstrated significantly better gas exchange and significantly reduced intragraft inflammation (reduced inflammatory mediators and cellular infiltrate). Experiments demonstrated that the protective effects afforded by 100% University of Wisconsin solution with carbon monoxide were not as potent as those of 5% University of Wisconsin solution with carbon monoxide. CONCLUSIONS This study demonstrates that 5% carbon monoxide as an additive to the cold flush/preservation solution can impart potent anti-inflammatory and cytoprotective effects after cold preservation and transplantation of lung grafts. Such ex vivo treatment of lung grafts with carbon monoxide can minimize concerns associated with carbon monoxide inhalation and might offer the opportunity to significantly advance the application of carbon monoxide in the clinical setting.


American Journal of Transplantation | 2012

Nitrite Reduces Acute Lung Injury and Improves Survival in a Rat Lung Transplantation Model

Ryujiro Sugimoto; Toshihiro Okamoto; Atsunori Nakao; J. Zhan; Yinna Wang; Junichi Kohmoto; D. Tokita; Carol Farver; Margaret M. Tarpey; Timothy R. Billiar; Mark T. Gladwin; Kenneth R. McCurry

Ischemia/reperfusion injury (IRI) is the most common cause of early mortality following lung transplantation (LTx). We hypothesized that nitrite, an endogenous source of nitric oxide (NO), may protect lung grafts from IRI. Rat lung grafts were stored in preservation solution at 4°C for 6 hours. Both grafts and recipients were treated with nitrite. Nitrite treatment was associated with significantly higher levels of tissue oxygenation, lower levels of cytokines and neutrophil/macrophage infiltration, lower myeloperoxidase activity, reduced oxidative injury and increased cGMP levels in grafts than in the controls. Treatment with either a nitric oxide scavenger or a soluble guanylyl cyclase (sGC) inhibitor diminished the beneficial effects of nitrite and decreased cGMP concentrations. These results suggest that nitric oxide, generated from nitrite, is the molecule responsible for the effects of nitrite via the nitric oxide/sGC/cGMP pathway. Allopurinol, a xanthine oxidoreductase (XOR) inhibitor, abrogated the protective effects of nitrite, suggesting that XOR is a key enzyme in the conversion of nitrite to nitric oxide. In vitro experiments demonstrated that nitrite prevented apoptosis in pulmonary endothelial cells. Nitrite also exhibits longer survival rate in recipients than control. In conclusion, nitrite inhibits lung IRI following cold preservation and had higher survival rate in LTx model.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Chronic hypoxia induces right heart failure in caveolin-1-/- mice.

J. Agustin Cruz; Eileen M. Bauer; Andres I. Rodriguez; Archana Gangopadhyay; Nabil S. Zeineh; Yinna Wang; Sruti Shiva; Hunter C. Champion; Philip M. Bauer

Caveolin-1 (Cav-1)-/- mice develop mild pulmonary hypertension as they age. In this study, we sought to determine the effect of chronic hypoxia, an established model of pulmonary hypertension, on young Cav-1-/- mice with no measurable signs of pulmonary hypertension. Exposure of Cav-1-/- mice to chronic hypoxia resulted in an initial rise in right ventricular (RV) systolic pressure (RVSP) similar to wild-type (WT) mice. By three weeks RVSP decreased in the Cav-1-/- mice, whereas it was maintained in WT mice. The drop in RVSP in Cav-1-/- mice was accompanied by decreased cardiac output, increased RV hypertrophy, RV interstitial fibrosis, decreased RV sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a mRNA and decreased RV function compared with WT mice. Importantly, minimal differences were noted in pulmonary vascular remodeling between WT and Cav-1-/- mice, and left ventricular function was normal in hypoxic Cav-1-/- mice. Mechanistically, increased endothelial nitric oxide synthase uncoupling and increased tyrosine nitration of protein kinase G were detected in the RV of Cav-1-/- mice. These hemodynamic, histological, and molecular changes were prevented in Cav-1-/- mice expressing an endothelial-specific Cav-1 transgene or by nitric oxide synthase inhibition. These data suggest that, in Cav-1-/- mice, increased oxidative/nitrosative stress due to endothelial nitric oxide synthase uncoupling modifies the response of the RV to pressure overload, accelerating the deterioration of RV function.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

Feng Wu; William S. Szczepaniak; Sruti Shiva; Huanbo Liu; Yinna Wang; Ling Wang; Ying Wang; Eric E. Kelley; Alex F. Chen; Mark T. Gladwin; Bryan J. McVerry

Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

Collaboration


Dive into the Yinna Wang's collaboration.

Top Co-Authors

Avatar

Sruti Shiva

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Zhan

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Li Mo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge