Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yinxiao Liu is active.

Publication


Featured researches published by Yinxiao Liu.


Bone | 2011

Performance of the MRI-based virtual bone biopsy in the distal radius: Serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations

Shing Chun Benny Lam; Michael J. Wald; Chamith S. Rajapakse; Yinxiao Liu; Punam K. Saha; Felix W. Wehrli

Serial reproducibility and reliability critically determine sensitivity to detect changes in response to intervention and provide a basis for sample size estimates. Here, we evaluated the performance of the MRI-based virtual bone biopsy in terms of 26 structural and mechanical parameters in the distal radius of 20 women in the age range of 50 to 75 years (mean=62.0 years, S.D.=8.1 years), representative of typical study populations in drug intervention trials and fracture studies. Subjects were examined three times at average intervals of 20.2 days (S.D.=14.5 days) by MRI at 1.5 T field strength at a voxel size of 137×137×410 μm(3). Methods involved prospective and retrospective 3D image registration and auto-focus motion correction. Analyses were performed from a central 5×5×5 mm(3) cuboid subvolume and trabecular volume consisting of a 13 mm axial slab encompassing the entire medullary cavity. Whole-volume axial stiffness and sub-regional Youngs and shear moduli were computed by finite-element analysis. Whole-volume-derived aggregate mean coefficient of variation of all structural parameters was 4.4% (range 1.8% to 7.7%) and 4.0% for axial stiffness; corresponding data in the subvolume were 6.5% (range 1.6% to 13.0%) for structural, and 5.5% (range 4.6% to 6.5%) for mechanical parameters. Aggregate ICC was 0.976 (range 0.947 to 0.986) and 0.992 for whole-volume-derived structural parameters and axial stiffness, and 0.946 (range 0.752 to 0.991) and 0.974 (range 0.965 to 0.978) for subvolume-derived structural and mechanical parameters, respectively. The strongest predictors of whole-volume axial stiffness were BV/TV, junction density, skeleton density and Tb.N (R(2) 0.79-0.87). The same parameters were also highly predictive of sub-regional axial modulus (R(2) 0.88-0.91). The data suggest that the method is suited for longitudinal assessment of the response to therapy. The underlying technology is portable and should be compatible with all general-purpose MRI scanners, which is appealing considering the very large installed base of this modality.


IEEE Transactions on Biomedical Engineering | 2014

A Robust Algorithm for Thickness Computation at Low Resolution and Its Application to In Vivo Trabecular Bone CT Imaging

Yinxiao Liu; Dakai Jin; Cheng Li; Kathleen F. Janz; Trudy L. Burns; James C. Torner; Steven M. Levy; Punam K. Saha

Adult bone diseases, especially osteoporosis, lead to increased risk of fracture which in turn is associated with substantial morbidity, mortality, and financial costs. Clinically, osteoporosis is defined by low bone mineral density; however, increasing evidence suggests that the microarchitectural quality of trabecular bone (TB) is an important determinant of bone strength and fracture risk. Accurate measures of TB thickness and marrow spacing is of significant interest for early diagnosis of osteoporosis or treatment effects. Here, we present a new robust algorithm for computing TB thickness and marrow spacing at a low resolution achievable in vivo. The method uses a star-line tracing technique that effectively deals with partial voluming effects of in vivo imaging with voxel size comparable to TB thickness. Also, the method avoids the problem of digitization associated with conventional algorithms based on sampling distance transform along skeletons. Accuracy of the method was examined using computer-generated phantom images, while the robustness of the method was evaluated on human ankle specimens in terms of stability across a wide range of voxel sizes, repeat scan reproducibility under in vivo conditions, and correlation between thickness values computed at ex vivo and in vivo imaging resolutions. Also, the sensitivity of the method was examined by evaluating its ability to predict the bone strength of cadaveric specimens. Finally, the method was evaluated in a human study involving 40 healthy young-adult volunteers (age: 19-21 years; 20 males and 20 females) and ten athletes (age: 19- 21 years; six males and four females). Across a wide range of voxel sizes, the new method is significantly more accurate and robust as compared to conventional methods. Both TB thickness and marrow spacing measures computed using the new method demonstrated strong associations (R2 ∈ [0.83, 0.87]) with bone strength. Also, the TB thickness and marrow spacing measures allowed discrimination between male and female volunteers (p ∈ [0.01, 0.04]) as well as between athletes and nonathletes (p ∈ [0.005, 0.03]).


medical image computing and computer assisted intervention | 2010

Graph search with appearance and shape information for 3-D prostate and bladder segmentation

Qi Song; Yinxiao Liu; Yunlong Liu; Punam K. Saha; Milan Sonka; Xiaodong Wu

The segmentation of soft tissues in medical images is a challenging problem due to the weak boundary, large deformation and serious mutual influence. We present a novel method incorporating both the shape and appearance information in a 3-D graph-theoretic framework to overcome those difficulties for simultaneous segmentation of prostate and bladder. An arc-weighted graph is constructed corresponding to the initial mesh. Both the boundary and region information is incorporated into the graph with learned intensity distribution, which drives the mesh to the best fit of the image. A shape prior penalty is introduced by adding weighted-arcs in the graph, which maintains the original topology of the model and constraints the flexibility of the mesh. The surface-distance constraints are enforced to avoid the leakage between prostate and bladder. The target surfaces are found by solving a maximum flow problem in low-order polynomial time. Both qualitative and quantitative results on prostate and bladder segmentation were promising, proving the power of our algorithm.


international symposium on biomedical imaging | 2014

Graph-based optimal multi-surface segmentation with a star-shaped prior: Application to the segmentation of the optic disc and cup

Junjie Bai; Mohammad Saleh Miri; Yinxiao Liu; Punam K. Saha; Mona K. Garvin; Xiaodong Wu

A novel graph-based optimal segmentation method which can simultaneously segment multiple star-shaped surfaces is presented in this paper. Minimum and maximum surface distance constraints can be enforced between different surfaces. In addition, the segmented surfaces are ensured to be smooth by incorporating surface smoothness constraints which limit the variation between adjacent surface voxels. A consistent digital ray system is utilized to make sure the segmentation result is star-shaped and consistent, without interpolating image as required by other methods. To the best of our knowledge, the concept of consistent digital rays is for the first time introduced into the field of medical imaging. The problem is formulated as an MRF optimization problem which can be efficiently and exactly solved by computing a single min s-t cut in an appropriately constructed graph. The method is applied to the segmentation of the optic disc and cup on 70 registered fundus and SD-OCT images from glaucoma patients. The result shows improved accuracy by applying the proposed method (versus using a classification-based approach).


international symposium on biomedical imaging | 2013

A new algorithm for trabecular bone thickness computation at low resolution achieved under in vivo condition

Yinxiao Liu; Dakai Jin; Punam K. Saha

Adult bone diseases, especially osteoporosis, lead to increased risk of fracture associated with substantial morbidity, mortality, and financial costs. Clinically, osteoporosis is defined by low bone mineral density (BMD); however, increasing evidence suggests that the micro-architectural quality of trabecular bone (TB) is an important determinant of bone strength and fracture risk. Accurate measurement of trabecular thickness and marrow spacing is of significant interest for early diagnosis of osteoporosis or treatment effects. Here, we present a new robust algorithm for computing TB thickness and marrow spacing at a low resolution achievable in vivo. The method uses a star-line tracing technique that effectively deals with partial voluming effects of in vivo imaging where voxel size is comparable to TB thickness. Experimental results on cadaveric ankle specimens have demonstrated the algorithms robustness (ICC > 0.98) under repeat scans of multi-row detector computed tomography (MD-CT) imaging. It has been observed in experimental results that TB thickness and marrow spacing measures as computed by the new algorithm have strong association (R2 ∈ {0.85, 0.87} ) with TBs experimental mechanical strength measures.


Journal of Spinal Cord Medicine | 2014

High bone density masks architectural deficiencies in an individual with spinal cord injury.

Shauna Dudley-Javoroski; Ryan Amelon; Yinxiao Liu; Punam K. Saha; Richard K. Shields

Abstract Context Spinal cord injury (SCI) causes a decline of bone mineral density (BMD) in the paralyzed extremities via the gradual degradation and resorption of trabecular elements. Clinical tools that report BMD may not offer insight into trabecular architecture flaws that could affect bones ability to withstand loading. We present a case of a woman with a 30-year history of SCI and abnormally high distal femur BMD. Findings Peripheral quantitative-computed tomography-based BMD for this subject was ∼20% higher than previously published non-SCI values. Computed tomography (CT) revealed evidence of sclerotic bone deposition in the trabecular envelope, most likely due to glucocorticoid-induced osteonecrosis. Volumetric topologic analysis of trabecular architecture indicated that the majority of the bone mineral was organized into thick, plate-like structures rather than a multi-branched trabecular network. Visual analysis of the CT stack confirmed that the sclerotic bone regions were continuous with the cortex at only a handful of points. Conclusions Conventional clinical BMD analysis could have led to erroneous assumptions about this subjects bone quality. CT-based analysis revealed that this subjects high BMD masked underlying architectural flaws. For patients who received prolonged glucocorticoid therapy, excessively high BMD should be viewed with caution. The ability of this subjects bone to resist fracture is, in our view, extremely suspect. A better understanding of the mechanical competency of this very dense, but architecturally flawed bone would be desirable before this subject engaged in activities that load the limbs.


Medical Physics | 2012

A new multi‐object image thresholding method based on correlation between object class uncertainty and intensity gradient

Yinxiao Liu; Guoyuan Liang; Punam K. Saha

PURPOSE Image thresholding and gradient analysis have remained popular image preprocessing tools for several decades due to the simplicity and straight-forwardness of their definitions. Also, optimum selection of threshold and gradient strength values are hidden steps in many advanced medical imaging algorithms. A reliable method for threshold optimization may be a crucial step toward automation of several medical image based applications. Most automatic thresholding and gradient selection methods reported in literature primarily focus on image histograms ignoring a significant amount of information embedded in the spatial distribution of intensity values forming visible features in an image. Here, we present a new method that simultaneously optimizes both threshold and gradient values for different object interfaces in an image that is based on unification of information from both the histogram and spatial image features; also, the method works for unknown number of object regions. METHODS A new energy function is formulated by combining the object class uncertainty measure, a histogram-based feature, of each pixel with its image gradient measure, a spatial contextual feature in an image. The energy function is designed to measure the overall compliance of the theoretical premise that, in a probabilistic sense, image intensities with high class uncertainty are associated with high image gradients. Finally, it is expressed as a function of threshold and gradient parameters and optimum combinations of these parameters are sought by locating pits and valleys on the energy surface. A major strength of the algorithm lies in the fact that it does not require the number of object regions in an image to be predefined. RESULTS The method has been applied on several medical image datasets and it has successfully determined both threshold and gradient parameters for different object interfaces even when some of the thresholds are almost impossible to locate in the histogram. Both accuracy and reproducibility of the method have been examined on several medical image datasets including repeat scan 3D multidetector computed tomography (CT) images of cadaveric ankles specimens. Also, the new method has been qualitatively and quantitatively compared with Otsus method along with three other algorithms based on minimum error thresholding, maximum segmented image information and minimization of homogeneity- and uncertainty-based energy and the results have demonstrated superiority of the new method. CONCLUSIONS We have developed a new automatic threshold and gradient strength selection algorithm by combining class uncertainty and spatial image gradient features. The performance of the method has been examined in terms of accuracy and reproducibility and the results found are better as compared to several popular automatic threshold selection methods.


Physics in Medicine and Biology | 2016

Trabecular bone characterization on the continuum of plates and rods using in vivo MR imaging and volumetric topological analysis.

Cheng Chen; Dakai Jin; Yinxiao Liu; Felix W. Wehrli; Gregory Chang; Peter J. Snyder; Ravinder R. Regatte; Punam K. Saha

Osteoporosis is associated with increased risk of fractures, which is clinically defined by low bone mineral density. Increasing evidence suggests that trabecular bone (TB) micro-architecture is an important determinant of bone strength and fracture risk. We present an improved volumetric topological analysis algorithm based on fuzzy skeletonization, results of its application on in vivo MR imaging, and compare its performance with digital topological analysis. The new VTA method eliminates data loss in the binarization step and yields accurate and robust measures of local plate-width for individual trabeculae, which allows classification of TB structures on the continuum between perfect plates and rods. The repeat-scan reproducibility of the method was evaluated on in vivo MRI of distal femur and distal radius, and high intra-class correlation coefficients between 0.93 and 0.97 were observed. The methods ability to detect treatment effects on TB micro-architecture was examined in a 2 years testosterone study on hypogonadal men. It was observed from experimental results that average plate-width and plate-to-rod ratio significantly improved after 6 months and the improvement was found to continue at 12 and 24 months. The bone density of plate-like trabeculae was found to increase by 6.5% (p  =  0.06), 7.2% (p  =  0.07) and 16.2% (p  =  0.003) at 6, 12, 24 months, respectively. While the density of rod-like trabeculae did not change significantly, even at 24 months. A comparative study showed that VTA has enhanced ability to detect treatment effects in TB micro-architecture as compared to conventional method of digital topological analysis for plate/rod characterization in terms of both percent change and effect-size.


IEEE Transactions on Visualization and Computer Graphics | 2018

Fuzzy Object Skeletonization: Theory, Algorithms, and Applications

Punam K. Saha; Dakai Jin; Yinxiao Liu; Gary E. Christensen; Cheng Chen

Skeletonization offers a compact representation of an object while preserving important topological and geometrical features. Literature on skeletonization of binary objects is quite mature. However, challenges involved with skeletonization of fuzzy objects are mostly unanswered. This paper presents a new theory and algorithm of skeletonization for fuzzy objects, evaluates its performance, and demonstrates its applications. A formulation of fuzzy grassfire propagation is introduced; its relationships with fuzzy distance functions, level sets, and geodesics are discussed; and several new theoretical results are presented in the continuous space. A notion of collision-impact of fire-fronts at skeletal points is introduced, and its role in filtering noisy skeletal points is demonstrated. A fuzzy object skeletonization algorithm is developed using new notions of surface- and curve-skeletal voxels, digital collision-impact, filtering of noisy skeletal voxels, and continuity of skeletal surfaces. A skeletal noise pruning algorithm is presented using branch-level significance. Accuracy and robustness of the new algorithm are examined on computer-generated phantoms and micro- and conventional CT imaging of trabecular bone specimens. An application of fuzzy object skeletonization to compute structure-width at a low image resolution is demonstrated, and its ability to predict bone strength is examined. Finally, the performance of the new fuzzy object skeletonization algorithm is compared with two binary object skeletonization methods.


international symposium on visual computing | 2014

Volumetric Topological Analysis on In Vivo Trabecular Bone Magnetic Resonance Imaging

Cheng Chen; Dakai Jin; Yinxiao Liu; Felix W. Wehrli; Gregory Chang; Peter J. Snyder; Ravinder R. Regatte; Punam K. Saha

Osteoporosis is a common bone disease associated with increased risk of low-trauma fractures leading to substantial morbidity, mortality, and financial costs. Clinically, osteoporosis is defined by low bone mineral density (BMD); however, increasing evidence suggests that trabecular bone (TB) micro-architectural quality is an important determinant of bone strength and fracture risk. Recently developed volumetric topological analysis (VTA) is a unique method that characterizes individual trabeculae on the continuum between a perfect plate and a perfect rod. In this paper, an improved VTA algorithm is presented that eliminates the binarization step using fuzzy skeletonization. Its repeat scan reproducibility is evaluated for two different in vivo magnetic resonance imaging (MRI) protocols. High intra-class correlation coefficients, greater than 0.93, were observed for both the knee and the wrist MRI. The ability of the method to detect testosterone treatment effects of a two-year longitudinal study on hypogonadal men is also presented. Our method shows statistically significant improvement of TB quality as early as 6 months and the trend was observed to continue at 12 and 24 months.

Collaboration


Dive into the Yinxiao Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix W. Wehrli

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge