Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yinxin Li is active.

Publication


Featured researches published by Yinxin Li.


Journal of Proteome Research | 2009

Comparative Proteomic Analysis of Differentially Expressed Proteins in Shoots of Salicornia europaea under Different Salinity

Xuchu Wang; Pengxiang Fan; Hongmiao Song; Xianyang Chen; Xiaofang Li; Yinxin Li

Soil salinity is a major abiotic stress that limits agriculture productivity worldwide. Salicornia europaea is a succulent annual euhalophyte and one of the most salt tolerant plant species. The elucidation of its salt tolerance mechanism is of significance for generating salt-tolerant crops. In this study, we provided high resolution of proteome reference maps of S. europaea shoot and obtained evidence on the salt tolerance mechanism by analyzing the proteomic responses of this plant to high salinity. Our results demonstrated significant variations existed in 196 out of 1880 protein spots detected on CBB stained 2-DE gels. Of these, 111 proteins were identified by mass spectrometry. Among them, the majority was energy production and conversion related proteins, followed by photosynthesis and carbohydrate metabolism associated enzymes. Analysis of protein expression patters revealed that energy production and ion homeostasis associated proteins played important roles for this plant salt tolerance ability. Hierarchical clustering results revealed many proteins were involved in S. europaea salt tolerance mechanism as a dynamic network. Finally, based on our proteomic results, we brought forward a possible schematic representation of mechanism associated with the systematic salt tolerance phenotype in S. europaea.


Biotechnology Letters | 2007

A modified Coomassie Brilliant Blue staining method at nanogram sensitivity compatible with proteomic analysis

Xuchu Wang; Xiaofang Li; Yinxin Li

A more sensitive and convenient Coomassie Brilliant Blue (CBB) staining method for visualizing proteins was developed. Compared with the modifications include the supplement of 10% (v/v) methanol into the fixing solution, an increase of an additional sensitization step and CBB raised from 0.1 to 0.125%. The improved method can detect proteins at nanogram level. The improved method is more sensitive than Blue Silver and more convenient than the Silver protocol. Mass spectrometry results confirmed that it is suitable for subsequent proteomic research.


Plant Physiology and Biochemistry | 2012

Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea

Sulian Lv; Ping Jiang; Xianyang Chen; Pengxiang Fan; Xuchu Wang; Yinxin Li

Euhalophyte Salicornia europaea L., one of the most salt-tolerant plant species in the world, can tolerate more than 1000 mM NaCl. To study the salt tolerance mechanism of this plant, the effects of different NaCl concentrations on plant growth, as well as Na(+) accumulation and distribution at organ, tissue, and subcellular levels, were investigated. Optimal growth and an improved photosynthetic rate were observed with the plant treated with 200-400 mM NaCl. The Na(+) content in the shoots was considerably higher than that in the roots of S. europaea. The Na(+) in S. europaea cells may act as an effective osmotic adjuster to maintain cell turgor, promoting photosynthetic competence and plant growth. The results from the SEM-X-ray and TEM-X-ray microanalyses demonstrate that Na(+) was compartmentalized predominantly into the cell vacuoles of shoot endodermis tissues. Accordingly, the transcript amounts of SeNHX1, SeVHA-A, and SeVP1 increased significantly with increased NaCl concentration, suggesting their important roles in Na(+) sequestration into the vacuoles. Therefore, a multiple sodium compartmentalization mechanism is proposed to enhance further the salt tolerance of S. europaea.


Planta | 2009

Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses

Hongmiao Song; Rongmin Zhao; Pengxiang Fan; Xuchu Wang; Xianyang Chen; Yinxin Li

Three AtHsp90 isoforms, cytosolic AtHsp90.2, chloroplast-located AtHsp90.5, and endoplasmic reticulum (ER)-located AtHsp90.7, were characterized by constitutive overexpressing their genes in Arabidopsisthaliana. Both types of the transgenic plants overexpressing cytosolic and organellar AtHsp90s showed reduced tolerance to salt and drought stresses with lower germination rates and fresh weights, but improved tolerance to high concentration of Ca2+ comparing with the wild type plants. Transcriptional analysis of ABA-responsive genes, RD29A, RD22 and KIN2 under salt and drought stresses, indicated that the induction expression of these genes was delayed by constitutive overexpression of cytosolic AtHsp90.2, but was hardly affected by that of organellar AtHsp90.5 and AtHsp90.7. These results implied that Arabidopsis different cellular compartments-located Hsp90s in Arabidopsis might be involved in abiotic stresses by different functional mechanisms, probably through ABA-dependent or Ca2+ pathways, and proper homeostasis of Hsp90 was critical for cellular stress response and/or tolerance in plants.


Plant and Cell Physiology | 2011

Transformation of β-Lycopene Cyclase Genes from Salicornia europaea and Arabidopsis Conferred Salt Tolerance in Arabidopsis and Tobacco

Xianyang Chen; Heping Han; Ping Jiang; Lingling Nie; Hexigeduleng Bao; Pengxiang Fan; Sulian Lv; Juanjuan Feng; Yinxin Li

Inhibition of lycopene cyclization decreased the salt tolerance of the euhalophyte Salicornia europaea L. We isolated a β-lycopene cyclase gene SeLCY from S. europaea and transformed it into Arabidopsis with stable expression. Transgenic Arabidopsis on post-germination exhibited enhanced tolerance to oxidative and salt stress. After 8 and 21 d recovery from 200 mM NaCl treatment, transgenic lines had a higher survival ratio than wild-type (WT) plants. Three-week-old transgenic plants treated with 200 mM NaCl showed better growth than the WT with higher photosystem activity and less H(2)O(2) accumulation. Determination of endogenous pigments of Arabidopsis treated with 200 mM NaCl for 0, 2 or 4 d demonstrated that the transgenic plants retained higher contents of carotenoids than the WT. Furthermore, to compare the difference between SeLCY and AtLCY from Arabidopsis, we used viral vector mediating ectopic expression of SeLCY and AtLCY in Nicotiana benthamiana. Although LCY genes transformation increased the salt tolerance in tobacco, there is no significant difference between SeLCY- and AtLCY-transformed plants. These findings indicate that SeLCY transgenic Arabidopsis improved salt tolerance by increasing synthesis of carotenoids, which impairs reactive oxygen species and protects the photosynthesis system under salt stress, and as a single gene, SeLCY functionally showed no advantage for salt tolerance improvement compared with AtLCY.


Journal of Plant Physiology | 2010

Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate

Chenshuo Chang; Baolan Wang; Lei Shi; Yinxin Li; Lian Duo; Wen-Hao Zhang

Ethylene is an important plant gas hormone, and the amino acid Glu is emerging as a messenger molecule in plants. To evaluate the role of ethylene and Glu in seed germination and radicle growth under salt stress, effects of 1-aminocyclopropane-1-carboxylic acid (ACC), Ethephon and Glu on germination and radicle growth of cucumber (Cucumis sativus L.) seeds in the absence and presence of 200 mM NaCl were investigated. Seed germination was markedly inhibited by salt stress, and this effect was alleviated by ACC and Ethephon. In contrast to seed germination, ACC and Ethephon had little effect on radicle growth under salt stress. In addition to ethylene, we found exogenous supply of Glu was effective in alleviating the salt stress-induced inhibition of seed germination and radicle growth. The effect of Glu on the seed germination and radicle growth was specific to L-Glu, whereas D-Glu and Gln had no effect. There was an increase in ethylene production during seed imbibition, and salt stress suppressed ethylene production. Exogenous L-Glu evoked ethylene evolution from the imbibed seeds and attenuated the reduction in ethylene evolution induced by salt stress. The alleviative effect of L-Glu on seed germination was diminished by antagonists of ethylene synthesis, aminoethoxyvinylglycine (AVG) and CoCl(2), suggesting that L-Glu is likely to exert its effect on seed germination by modulation of ethylene evolution. These findings demonstrate that ethylene is associated with suppression of seed germination under salt stress and that L-Glu interacts with ethylene in regulation of seed germination under salt stress.


Proteomics | 2011

Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins

Pengxiang Fan; Juanjuan Feng; Ping Jiang; Xianyang Chen; Hexigeduleng Bao; Lingling Nie; Dan Jiang; Sulian Lv; Tingyun Kuang; Yinxin Li

Halophyte, like Salicornia europaea, could make full use of marginal saline land for carbon fixation. How the photosynthesis of S. europaea is regulated under high salinity implicates a significant aspect to exploit this pioneer plant in future. Measurement of photosynthesis parameters demonstrated the reduction of photosynthesis for the 0 and 800 mM NaCl treated plants are more likely due to non‐stomatal limitation, which might be caused by changes in the enzymes associated with photosynthesis. Different salinity induced ultrastructure changes other than photosynthetic apparatus damage, suggesting the photosynthesis of S. europaea might be affected via biochemical regulation. Comparative proteomics analysis of chloroplast proteins by 2‐D gel electrophoresis reproducibly detected 90 differentially expressed proteins, among which 66 proteins were identified by nanoLC MS/MS. Further study of thylakoid membrane proteins by Blue‐Native PAGE proved the increase in abundance of light reaction proteins under salinity. Analysis of gene expression patterns of 12 selected proteins provides evidence for the correlations between transcription and proteomics data. Based on our results, a putative model of photosynthesis regulatory network figured out proper coordination of carbon fixation and nitrogen metabolism in chloroplast of S. europaea under salinity, which provided subcellular level insight into salt tolerance mechanism in S. europaea.


BMC Plant Biology | 2015

High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea.

Juanjuan Feng; Jin-Hui Wang; Pengxiang Fan; Weitao Jia; Lingling Nie; Ping Jiang; Xianyang Chen; Sulian Lv; Lichuan Wan; Sandra Chang; Shizhong Li; Yinxin Li

BackgroundmicroRNAs (miRNAs) are implicated in plant development processes and play pivotal roles in plant adaptation to environmental stresses. Salicornia europaea, a salt mash euhalophyte, is a suitable model plant to study salt adaptation mechanisms. S. europaea is also a vegetable, forage, and oilseed that can be used for saline land reclamation and biofuel precursor production on marginal lands. Despite its importance, no miRNA has been identified from S. europaea thus far.ResultsDeep sequencing was performed to investigate small RNA transcriptome of S. europaea. Two hundred and ten conserved miRNAs comprising 51 families and 31 novel miRNAs (including seven miRNA star sequences) belonging to 30 families were identified. About half (13 out of 31) of the novel miRNAs were only detected in salt-treated samples. The expression of 43 conserved and 13 novel miRNAs significantly changed in response to salinity. In addition, 53 conserved and 13 novel miRNAs were differentially expressed between the shoots and roots. Furthermore, 306 and 195 S. europaea unigenes were predicted to be targets of 41 conserved and 29 novel miRNA families, respectively. These targets encoded a wide range of proteins, and genes involved in transcription regulation constituted the largest category. Four of these genes encoding laccase, F-box family protein, SAC3/GANP family protein, and NADPH cytochrome P-450 reductase were validated using 5′-RACE.ConclusionsOur results indicate that specific miRNAs are tightly regulated by salinity in the shoots and/or roots of S. europaea, which may play important roles in salt tolerance of this euhalophyte. The S. europaea salt-responsive miRNAs and miRNAs that target transcription factors, nucleotide binding site-leucine-rich repeat proteins and enzymes involved in lignin biosynthesis as well as carbon and nitrogen metabolism may be applied in genetic engineering of crops with high stress tolerance, and genetic modification of biofuel crops with high biomass and regulatable lignin biosynthesis.


Plant Cell and Environment | 2015

Virus‐induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ‐aminobutyric acid metabolic pathway

Hexigeduleng Bao; Xianyang Chen; Sulian Lv; Ping Jiang; Juanjuan Feng; Pengxiang Fan; Lingling Nie; Yinxin Li

γ-Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABA-Ts) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus-induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABA-Ts (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs- and SlGABA-Ts-silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH-silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ-hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ-hydroxybutyrate and subsequent ROS accumulation under salt stress.


Acta Physiologiae Plantarum | 2012

Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea

Sulian Lv; Lingling Nie; Pengxiang Fan; Xuchu Wang; Dan Jiang; Xianyang Chen; Yinxin Li

Salicornia europaea is a succulent euhalophyte that belongs to the Chenopodiaceae family. It is found that moderate concentration of NaCl can dramatically stimulate the growth of S. europaea plants. To elucidate the mechanism underlying the phenomenon, morphological and physiological changes of S. europaea in response to different ions, including cations (Na+, K+, Li+, Cs+) and anions (Cl−, NO3−, CH3COO−) were investigated, and the effects of Na+, Cl− and K+ on the growth of S. europaea were also studied. Na+ was more effective than K+ and Cl− in stimulating shoot succulence, cell expansion, and stomatal opening. Plants treated with Na+ (including NaCl, Na+, NaNO3) showed better plant growth, increased photosynthesis and less cell membrane damage than those untreated and treated with 200 mM of Cl− and K+ (including KCl and KNO3). Both SEM-X-Ray microanalysis and flame emission results revealed that well developed S. europaea plants had a higher content of sodium but lower potassium and chlorine. It is concluded that sodium plays a more important role in the growth and development of S. europaea than potassium and chloride.

Collaboration


Dive into the Yinxin Li's collaboration.

Top Co-Authors

Avatar

Sulian Lv

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xianyang Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pengxiang Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Juanjuan Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ping Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hexigeduleng Bao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lingling Nie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weitao Jia

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin-Hui Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuchu Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge