Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yinyue Deng is active.

Publication


Featured researches published by Yinyue Deng.


The ISME Journal | 2008

A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition

Calvin Boon; Yinyue Deng; Lian-Hui Wang; Ya-Wen He; Jin-Ling Xu; Yang Fan; Shen Q Pan; Lian-Hui Zhang

In addition to producing lethal antibiotics, microorganisms may also use a new form of antagonistic mechanism in which signal molecules are exported to influence the gene expression and hence the ecological competence of their competitors. We report here the isolation and characterization of a novel signaling molecule, cis-2-dodecenoic acid (BDSF), from Burkholderia cenocepacia. BDSF is structurally similar to the diffusible signal factor (DSF) that is produced by the RpfF enzyme of Xanthomonas campestris. Deletion analysis demonstrated that Bcam0581, which encodes an RpfF homologue, was essential for BDSF production. The gene is highly conserved and widespread in the Burkholderia cepacia complex. Exogenous addition of BDSF restored the biofilm and extracellular polysaccharide production phenotypes of Xanthomonas campestris pv. campestris DSF-deficient mutants, highlighting its potential role in inter-species signaling. Further analyses showed that Candida albicans germ tube formation was strongly inhibited by either coculture with B. cenocepacia or by exogenous addition of physiological relevant levels of BDSF, whereas deletion of Bcam0581 abrogated the inhibitory ability of the bacterial pathogen. As B. cenocepacia and C. albicans are frequently encountered human pathogens, identification of the BDSF signal and its activity thus provides a new insight into the molecular grounds of their antagonistic interactions whose importance to microbial ecology and pathogenesis is now becoming evident.


Nature Chemical Biology | 2013

A cell-cell communication signal integrates quorum sensing and stress response

Jasmine Lee; Jien Wu; Yinyue Deng; Jing Wang; Chao Wang; Jianhe Wang; Changqing Chang; Yi-Hu Dong; Paul Williams; Lian-Hui Zhang

Pseudomonas aeruginosa uses a hierarchical quorum sensing (QS) network consisting of las, pqs and rhl regulatory elements to coordinate the expression of bacterial virulence genes. However, clinical isolates frequently contain loss-of-function mutations in the central las system. This motivated us to search for a mechanism that may functionally substitute las. Here we report identification of a new QS signal, IQS. Disruption of IQS biosynthesis paralyzes the pqs and rhl QS systems and attenuates bacterial virulence. Production of IQS is tightly controlled by las under normal culture conditions but is also activated by phosphate limitation, a common stressor that bacteria encounter during infections. Thus, these results have established an integrated QS system that connects the central las system and phosphate-stress response mechanism to the downstream pqs and rhl regulatory systems. Our discovery highlights the complexity of QS signaling systems and extends the gamut of QS and stress-response mechanisms.


Applied and Environmental Microbiology | 2010

Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex.

Yinyue Deng; Jien Wu; Leo Eberl; Lian-Hui Zhang

ABSTRACT Previous work has shown that Burkholderia cenocepacia produces the diffusible signal factor (DSF) family signal cis-2-dodecenoic acid (C12:Δ2, also known as BDSF), which is involved in the regulation of virulence. In this study, we determined whether C12:Δ2 production is conserved in other members of the Burkholderia cepacia complex (Bcc) by using a combination of high-performance liquid chromatography, mass spectrometry, and bioassays. Our results show that five Bcc species are capable of producing C12:Δ2 as a sole DSF family signal, while four species produce not only C12:Δ2 but also a new DSF family signal, which was identified as cis,cis-11-methyldodeca-2,5-dienoic acid (11-Me-C12:Δ2,5). In addition, we demonstrate that the quorum-sensing signal cis-11-methyl-2-dodecenoic acid (11-Me-C12:Δ2), which was originally identified in Xanthomonas campestris supernatants, is produced by Burkholderia multivorans. It is shown that, similar to 11-Me-C12:Δ2 and C12:Δ2, the newly identified molecule 11-Me-C12:Δ2,5 is a potent signal in the regulation of biofilm formation, the production of virulence factors, and the morphological transition of Candida albicans. These data provide evidence that DSF family molecules are highly conserved bacterial cell-cell communication signals that play key roles in the ecology of the organisms that produce them.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover

Yinyue Deng; Nadine Schmid; Chao Wang; Jianhe Wang; Gabriella Pessi; Donghui Wu; Jasmine Lee; Claudio Aguilar; Christian H. Ahrens; Changqing Chang; Haiwei Song; Leo Eberl; Lian-Hui Zhang

Many bacterial pathogens produce diffusible signal factor (DSF)-type quorum sensing (QS) signals in modulation of virulence and biofilm formation. Previous work on Xanthomonas campestris showed that the RpfC/RpfG two-component system is involved in sensing and responding to DSF signals, but little is known in other microorganisms. Here we show that in Burkholderia cenocepacia the DSF-family signal cis-2-dodecenoic acid (BDSF) negatively controls the intracellular cyclic dimeric guanosine monophosphate (c-di-GMP) level through a receptor protein RpfR, which contains Per/Arnt/Sim (PAS)-GGDEF-EAL domains. RpfR regulates the same phenotypes as BDSF including swarming motility, biofilm formation, and virulence. In addition, the BDSF− mutant phenotypes could be rescued by in trans expression of RpfR, or its EAL domain that functions as a c-di-GMP phosphodiesterase. BDSF is shown to bind to the PAS domain of RpfR with high affinity and stimulates its phosphodiesterase activity through induction of allosteric conformational changes. Our work presents a unique and widely conserved DSF-family signal receptor that directly links the signal perception to c-di-GMP turnover in regulation of bacterial physiology.


Journal of Bacteriology | 2009

Differential Modulation of Burkholderia cenocepacia Virulence and Energy Metabolism by the Quorum-Sensing Signal BDSF and Its Synthase

Yinyue Deng; Calvin Boon; Leo Eberl; Lian-Hui Zhang

Burkholderia cenocepacia produces the molecule cis-2-dodecenoic acid (BDSF), which was previously shown to play a role in antagonism against the fungal pathogen Candida albicans by interfering with its morphological transition. In this study, we show that production of BDSF is under stringent transcriptional control and the molecule accumulates in a cell density-dependent manner, typically found with quorum-sensing (QS) signals. B. cenocepacia mutant strain J2315 with a deleted Bcam0581 gene, which encodes an enzyme essential for BDSF production, exhibited a growth defect in minimal medium but not in rich medium, decreased virulence gene expression, and attenuated virulence in a zebrafish infection model. Exogenous addition of BDSF to the mutant rescues virulence gene expression but fails to restore its growth defect in minimal medium. We show that Bcam0581, but not BDSF, is associated with B. cenocepacia ATP biogenesis. We also provide evidence that some of the BDSF-regulated genes are also controlled by the acyl-homoserine-lactone-dependent QS system and are thus coregulated by two cell-to-cell signaling systems. These data demonstrate that in addition to the role in cross-kingdom signal interference, BDSF and its synthase are also important for the virulence and physiology of B. cenocepacia.


Bioresource Technology | 2013

Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway

Shaohua Chen; Yi Hu Dong; Changqing Chang; Yinyue Deng; Xi Fen Zhang; Guohua Zhong; Haiwei Song; Meiying Hu; Lian-Hui Zhang

Brevibacterium aureum DG-12, a new bacterial strain isolated from active sludge, was able to degrade and utilize cyfluthrin as a growth substrate in the mineral medium. Response surface methodology using central composite rotatable design of cultural conditions was successfully employed for optimization resulting in 88.6% degradation of cyfluthrin (50mgL(-1)) within 5days. The bacterium degraded cyfluthrin by cleavage of both the carboxylester linkage and diaryl bond to form 2,2,3,3-tetramethyl-cyclopropanemethanol, 4-fluoro-3-phenexy-benzoic acid, 3,5-dimethoxy phenol, and phenol, and subsequently transformed these compounds with a maximum specific degradation rate, half-saturation constant and inhibition constant of 1.0384day(-1), 20.4967mgL(-1), and 141.9013mgL(-1), respectively. A novel degradation pathway for cyfluthrin was proposed based on analysis of these metabolites. In addition, this strain was found capable of degrading a wide range of synthetic pyrethroid insecticides. Our results suggest that B. aureum DG-12 may be an ideal microorganism for bioremediation of the pyrethroid-contaminated environments.


PLOS ONE | 2012

The AHL- and BDSF-dependent quorum sensing systems control specific and overlapping sets of genes in Burkholderia cenocepacia H111.

Nadine Schmid; Gabriella Pessi; Yinyue Deng; Claudio Aguilar; Aurélien Carlier; Alexander Grunau; Ulrich Omasits; Lian-Hui Zhang; Christian H. Ahrens; Leo Eberl

Quorum sensing in Burkholderia cenocepacia H111 involves two signalling systems that depend on different signal molecules, namely N-acyl homoserine lactones (AHLs) and the diffusible signal factor cis-2-dodecenoic acid (BDSF). Previous studies have shown that AHLs and BDSF control similar phenotypic traits, including biofilm formation, proteolytic activity and pathogenicity. In this study we mapped the BDSF stimulon by RNA-Seq and shotgun proteomics analysis. We demonstrate that a set of the identified BDSF-regulated genes or proteins are also controlled by AHLs, suggesting that the two regulons partially overlap. The detailed analysis of two mutually regulated operons, one encoding three lectins and the other one encoding the large surface protein BapA and its type I secretion machinery, revealed that both AHLs and BDSF are required for full expression, suggesting that the two signalling systems operate in parallel. In accordance with this, we show that both AHLs and BDSF are required for biofilm formation and protease production.


Scientific Reports | 2015

Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19

Shaohua Chen; Yinyue Deng; Changqing Chang; Jasmine Lee; Yingying Cheng; Zining Cui; Jianuan Zhou; Fei He; Meiying Hu; Lian-Hui Zhang

Cyhalothrin is a common environmental pollutant which poses increased risks to non-target organisms including human beings. This study reported for the first time a newly isolated strain, Bacillus thuringiensis ZS-19 completely degraded cyhalothrin in minimal medium within 72u2005h. The bacterium transformed cyhalothrin by cleavage of both the ester linkage and diaryl bond to yield six intermediate products. Moreover, a novel degradation pathway of cyhalothrin in strain ZS-19 was proposed on the basis of the identified metabolites. In addition to degradation of cyhalothrin, this strain was found to be capable of degrading 3-phenoxybenzoic acid, a common metabolite of pyrethroids. Furthermore, strain ZS-19 participated in efficient degradation of a wide range of pyrethroids including cyhalothrin, fenpropathrinn, deltamethrin, beta-cypermethrin, cyfluthrin and bifenthrin. Taken together, our results provide insights into the mechanism of cyhalothrin degradation and also highlight the promising potentials of B.thuringiensis ZS-19 in bioremediation of pyrethroid-contaminated environment. This is the first report of (i) degradation of cyhalothrin and other pyrethroids by B.thuringiensis, (ii) identification of 3-phenoxyphenyl acetonitrile and N-(2-isoproxy-phenyl)-4-phenoxy-benzamide as the metabolites in the degradation pathway of pyrethroids, and (iii) a pathway of degradation of cyhalothrin by cleavage of both the ester linkage and diaryl bond in a microorganism.


BMC Microbiology | 2013

Cis -2-dodecenoic acid quorum sensing system modulates N -acyl homoserine lactone production through RpfR and cyclic di-GMP turnover in Burkholderia cenocepacia

Yinyue Deng; Amy Lim; Jing Wang; Tielin Zhou; Shaohua Chen; Jasmine Lee; Yi-Hu Dong; Lian-Hui Zhang

BackgroundBurkholderia cenocepacia employs both N-Acyl homoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) quorum sensing (QS) systems in regulation of bacterial virulence. It was shown recently that disruption of BDSF synthase RpfFBc caused a reduction of AHL signal production in B. cenocepacia. However, how BDSF system influences AHL system is still not clear.ResultsWe show here that BDSF system controls AHL system through a novel signaling mechanism. Null mutation of either the BDSF synthase, RpfFBc, or the BDSF receptor, RpfR, caused a substantial down-regulation of AHL signal production in B. cenocepacia strain H111. Genetic and biochemical analyses showed that BDSF system controls AHL signal production through the transcriptional regulation of the AHL synthase gene cepI by modulating the intracellular level of second messenger cyclic di-GMP (c-di-GMP). Furthermore, we show that BDSF and AHL systems have a cumulative role in the regulation of various biological functions, including swarming motility, biofilm formation and virulence factor production, and exogenous addition of either BDSF or AHL signal molecules could only partially rescue the changed phenotypes of the double deletion mutant defective in BDSF and AHL signal production.ConclusionsThese results, together with our previous findings, thus depict a molecular mechanism with which BDSF regulates AHL signal production and bacterial virulence through modulating the phosphodiesterase activity of its receptor RpfR to influence the intracellular level of c-di-GMP.


PLOS ONE | 2013

Pseudomonas aeruginosa Cytotoxicity Is Attenuated at High Cell Density and Associated with the Accumulation of Phenylacetic Acid

Jianhe Wang; Yi-Hu Dong; Tielin Zhou; Xiaoling Liu; Yinyue Deng; Chao Wang; Jasmine R. Lee; Lian-Hui Zhang

Background P. aeruginosa is known to cause acute cytotoxicity against various human and animal cells and tissues. Methodology/Findings Intriguingly, however, in this study we noticed that while a low cell density inoculum of P. aeruginosa caused severe cytotoxicity against human lung tissue cell line A549, increasing the cell density of bacterial inoculum led to decreased cytotoxicity. Addition of the supernatants from high density bacterial culture to low cell density inoculum protected the human cells from bacterial cytotoxic damage, suggesting that P. aeruginosa may produce and accumulate an inhibitory molecule(s) counteracting its pathogenic infection. The inhibitor was purified from the stationary-phase culture supernatants of P. aeruginosa strain PAO1 using bioassay-guided high performance liquid chromatography (HPLC), and characterized to be phenylacetic acid (PAA) by mass spectrometry and nuclear magnetic resonance spectroscopy. Microarray analysis revealed that treatment of P. aeruginosa with PAA down-regulated the transcriptional expression of Type III secretion system (T3SS) genes and related regulatory genes including rsmA and vfr, which were confirmed by transcriptional and translational analysis. Conclusions Identification of bacterial metabolite PAA as a T3SS-specific inhibitor explains this intriguing inverse cell-density-dependent-cytotoxicity phenomenon as T3SS is known to be a key virulence factor associated with cytotoxicity and acute infection. The findings may provide useful clues for design and development of new strategies to combat this formidable bacterial pathogen.

Collaboration


Dive into the Yinyue Deng's collaboration.

Top Co-Authors

Avatar

Lian-Hui Zhang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Chao Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jien Wu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Shaohua Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianhe Wang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Meiying Hu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haiwei Song

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Changqing Chang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guohua Zhong

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge