Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yipin Zhou is active.

Publication


Featured researches published by Yipin Zhou.


Journal of Applied Physiology | 2009

Effects of the molecular mass of tense-state polymerized bovine hemoglobin on blood pressure and vasoconstriction.

Pedro Cabrales; Guoyong Sun; Yipin Zhou; David R. Harris; Amy G. Tsai; Marcos Intaglietta; Andre F. Palmer

Despite recent advances in the design of hemoglobin (Hb)-based oxygen carriers (HBOCs), vasoconstriction, presumably caused by nitric oxide (NO) scavenging, vessel wall hyperoxygenation, and/or extravasation, has been identified as the principal road block hampering commercial development of HBOCs. This study was designed to analyze systemic and microvascular responses to the molecular mass and plasma concentration of tense (T)-state polymerized bovine Hb (PolybHb) solutions. Experiments were performed using the hamster window chamber model subjected to successive hypervolemic infusions of T-state PolybHb solutions. PolybHb plasma concentrations were evaluated, namely, 0.5, 1.0 and 1.5 g/dl, respectively. Infusion of PolybHb solutions with molecular mass >500 kDa elicited hypertension and vasoconstriction proportional to the plasma concentration and inversely proportional to the PolybHb cross-link density. However, two high-molecular mass PolybHb solutions, PolybHb(40:1)(high) PolybHb(50:1)(high), did not elicit vasoconstriction at all concentrations studied, whereas PolybHb(50:1)(high) only elicited moderate hypertension at the highest concentration studied. In contrast, infusion of PolybHb solutions with molecular mass <500 kDa elicited significant hypertension and vasoconstriction compared with PolybHb solutions with molecular mass >500 kDa that was proportional to the plasma concentration and inversely proportional to the PolybHb cross-link density. We present promising results for highly cross-linked T-state PolybHb solutions with molecular mass >500 kDa [PolybHb(40:1)(high) PolybHb(50:1)(high)], which supports the concept that HBOC size/molecular mass influences its proximity to the vascular endothelium and molecular diffusivity. The hemodynamics of HBOC within the plasma layer surrounding the abluminal side endothelium regulates NO production and consumption, vessel oxygen flux, and extravasation. Although mechanistically attractive, neither of these hypotheses can be directly tested in vivo and will require further investigation.


Nitric Oxide | 2011

Effects of T- and R-state stabilization on deoxyhemoglobin-nitrite reactions and stimulation of nitric oxide signaling.

Nadiezhda Cantu-Medellin; Dario A. Vitturi; Cilina Rodriguez; Serena Murphy; Scott C. Dorman; Sruti Shiva; Yipin Zhou; Yiping Jia; Andre F. Palmer; Rakesh P. Patel

Recent data suggest that transitions between the relaxed (R) and tense (T) state of hemoglobin control the reduction of nitrite to nitric oxide (NO) by deoxyhemoglobin. This reaction may play a role in physiologic NO homeostasis and be a novel consideration for the development of the next generation of hemoglobin-based blood oxygen carriers (HBOCs, i.e. artificial blood substitutes). Herein we tested the effects of chemical stabilization of bovine hemoglobin in either the T- (THb) or R-state (RHb) on nitrite-reduction kinetics, NO-gas formation and ability to stimulate NO-dependent signaling. These studies were performed over a range of fractional saturations that is expected to mimic biological conditions. The initial rate for nitrite-reduction decreased in the following order RHb>bHb>THb, consistent with the hypothesis that the rate constant for nitrite reduction is faster with R-state Hb and slower with T-state Hb. Moreover, RHb produced more NO-gas and inhibited mitochondrial respiration more potently than both bHb and THb. Interestingly, at low oxygen fractional saturations, THb produced more NO and stimulated nitrite-dependent vasodilation more potently than bHb despite both derivatives having similar initial rates for nitrite reduction and a more negative reduction potential in THb versus bHb. These data suggest that cross-linking of bovine hemoglobin in the T-state conformation leads to a more effective coupling of nitrite reduction to NO-formation. Our results support the model of allosteric regulation of nitrite reduction by deoxyhemoglobin and show that cross-linking hemoglobins in distinct quaternary states can generate products with increased NO yields from nitrite reduction that could be harnessed to promote NO-signaling in vivo.


Biomaterials | 2010

Synthesis, Biophysical Properties and Pharmacokinetics of Ultrahigh Molecular Weight Tense and Relaxed State Polymerized Bovine Hemoglobins

Paul W. Buehler; Yipin Zhou; Pedro Cabrales; Yiping Jia; Guoyong Sun; David R. Harris; Amy G. Tsai; Marcos Intaglietta; Andre F. Palmer

Hemoglobin-based oxygen carriers (HBOC) are currently being developed as red blood cell (RBC) substitutes for use in transfusion medicine. Despite significant commercial development, late stage clinical results of polymerized hemoglobin (PolyHb) solutions hamper development. We synthesized two types of PolyHbs with ultrahigh molecular weights: tense (T) state PolyHb (M(W)=16.59 MDa and P(50)=41 mmHg) and relaxed (R) state PolyHb (M(W)=26.33 MDa and P(50)=0.66 mmHg). By maintaining Hb in either the T- or R-state during the polymerization reaction, we were able to synthesize ultrahigh molecular weight PolyHbs in distinct quaternary states with no tetrameric Hb, high viscosity, low colloid osmotic pressure and the ability to maintain O(2) dissociation, CO association and NO dioxygenation reactions. The PolyHbs elicited some in vitro RBC aggregation that was less than 6% dextran (500 kDa) but more than 5% human serum albumin. In vitro, T-state PolybHb autoxidized faster than R-state PolybHb as expected from previously reported studies, conversely, when administered to guinea pigs as a 20% exchange transfusion, R-state PolybHb oxidized faster and to a greater extent than T-state PolybHb, suggesting a more complex oxidative processes in vivo. Our findings also demonstrate that T-state PolybHb exhibited a longer circulating half-life, slower clearance and longer systemic exposure time compared to R-state PolybHb.


Transfusion | 2012

Hypervolemic infusion of Lumbricus terrestris erythrocruorin purified by tangential-flow filtration

Jacob Elmer; Katie Zorc; Shahid Rameez; Yipin Zhou; Pedro Cabrales; Andre F. Palmer

BACKGROUND: The hemoglobin of the earthworm Lumbricus terrestris (also known as erythrocruorin, or LtEc) is a naturally occurring high‐molecular‐weight protein assembly (3.6 MDa) that is extremely stable, resistant to oxidation, and transports oxygen similarly to human whole blood. Therefore, LtEc may serve as an alternative to donated human red blood cells. However, a suitable purification process must be developed to produce highly pure LtEc on a large scale that can be evaluated in an animal model to determine the safety and efficacy of LtEc.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Tissue oxygenation after exchange transfusion with ultrahigh-molecular-weight tense- and relaxed-state polymerized bovine hemoglobins

Pedro Cabrales; Yipin Zhou; David R. Harris; Andre F. Palmer

Hemoglobin (Hb)-based O(2) carriers (HBOCs) constitute a class of therapeutic agents designed to correct the O(2) deficit under conditions of anemia and traumatic blood loss. The O(2) transport capacity of ultrahigh-molecular-weight bovine Hb polymers (PolybHb), polymerized in the tense (T) state and relaxed (R) state, were investigated in the hamster chamber window model using microvascular measurements to determine O(2) delivery during extreme anemia. The anemic state was induced by hemodilution with a plasma expander (70-kDa dextran). After an initial moderate hemodilution to 18% hematocrit, animals were randomly assigned to exchange transfusion groups based on the type of PolybHb solution used (namely, T-state PolybHb and R-state PolybHb groups). Measurements of systemic parameters, microvascular hemodynamics, capillary perfusion, and intravascular and tissue O(2) levels were performed at 11% hematocrit. Both PolybHbs were infused at 10 g/dl, and their viscosities were higher than nondiluted blood. Restitution of the O(2) carrying capacity with T-state PolybHb exhibited lower arterial pressure and higher functional capillary density compared with R-state PolybHb. Central arterial O(2) tensions increased significantly for R-state PolybHb compared with T-state PolybHb; conversely, microvascular O(2) tensions were higher for T-state PolybHb compared with R-state PolybHb. The increased tissue Po(2) attained with T-state PolybHb results from the larger amount of O(2) released from the PolybHb and maintenance of macrovascular and microvascular hemodynamics compared with R-state PolybHb. These results suggest that the extreme high O(2) affinity of R-state PolybHb prevented O(2) bound to PolybHb from been used by the tissues. The results presented here show that T-state PolybHb, a high-viscosity O(2) carrier, is a quintessential example of an appropriately engineered O(2) carrying solution, which preserves vascular mechanical stimuli (shear stress) lost during anemic conditions and reinstates oxygenation, without the hypertensive or vasoconstriction responses observed in previous generations of HBOCs.


Toxicological Sciences | 2012

Down selection of polymerized bovine hemoglobins for use as oxygen releasing therapeutics in a guinea pig model.

Jin Hyen Baek; Yipin Zhou; David R. Harris; Dominik J. Schaer; Andre F. Palmer; Paul W. Buehler

Hemoglobin (Hb)-based oxygen carriers (HBOCs) are being developed as resuscitative fluids for use in multiple medical applications and in lieu of blood transfusion. However, cardiovascular, central nervous system, and renal adverse events have largely impeded progress. This has prompted a need to evaluate novel down selection approaches for HBOCs prior to in-depth preclinical and clinical safety testing. In the present study, polymerized bovine Hbs (PolybHbs) were prepared with increasing ratios of glutaraldehyde to bovine Hb (10:1, 20:1, 30:1, and 40:1). The optimal PolybHb candidate selection was based on a priori determined in vivo response to include a long circulating PolybHb with no measurable renal exposure, minimal cardiovascular response, limited oxidation to metHb in vitro, or in circulation and absence of acute end organ toxicity. Guinea pigs were dosed via a 50% blood for PolybHb exchange transfusion. Data suggested that the 30:1 preparation exhibited maximum circulatory exposure (AUC(0)(-∞)) with the lowest level of oxidation (plasma metHb formation) and minimal (< 10%) blood pressure elevation. Additionally, the 30:1 preparation was absent renal iron deposition as well as abnormal glomerular/tubular histopathology or serum creatinine elevation. Clearance pathways predominantly followed those consistent with endogenous Hb clearance based pathways. Therefore, data confirmed the ability to select a single PolybHb from a small library of HBOCs based on a priori determined characteristics. Moreover, the approach to down selection described could be applied to enhance the early predictability of human safety for this class of biological therapeutics to optimize for specific indications.


Biotechnology Progress | 2011

Synthesis, biophysical properties, and oxygenation potential of variable molecular weight glutaraldehyde-polymerized bovine hemoglobins with low and high oxygen affinity†

Yipin Zhou; Yiping Jia; Paul W. Buehler; Guo Chen; Pedro Cabrales; Andre F. Palmer

In a recent study, ultrahigh molecular weight (Mw) glutaraldehyde‐polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top‐load model.1 In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin‐based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.


Journal of Trauma-injury Infection and Critical Care | 2011

Small-volume resuscitation from hemorrhagic shock using high-molecular-weight tense-state polymerized hemoglobins.

Andre F. Palmer; Ning Zhang; Yipin Zhou; David R. Harris; Pedro Cabrales

BACKGROUND The objective of this study was to determine the role of plasma oxygen carrying capacity during resuscitation from hemorrhagic shock (HS). METHODS Hemodynamic responses to small-volume resuscitation from HS with hypertonic saline followed by infusion of ultrahigh-molecular-weight tense-state polymerized hemoglobins (PolyHbs) were studied in the hamster window chamber model. HS was induced by withdrawing 50% of the blood volume (BV), and hypovolemic state was maintained for 1 hour. Resuscitation was implemented by infusion of hypertonic saline (3.5% of BV) followed by 10% of BV infusion of polymerized human Hb (PolyHbhum, P50=49 mm Hg), polymerized bovine Hb (PolyHbbov, P50=40 mm Hg), or human serum albumin (HSA), all at 10 g/dL. Resuscitation was monitored over 90 minutes. RESULTS PolyHbhum elicited higher arterial pressure, produced vasoconstriction, and decreased perfusion. In contrast, PolyHbbov and HSA exhibited lower blood pressure and partially restored perfusion and functional capillary density compared with PolyHbhum. Blood gas parameters showed a pronounced recovery after resuscitation with PolyHbbov compared with both PolyHbhum and HSA. Tissue PO2 was significantly improved in the PolyHbbov group, showing that the moderate increase in P50 of PolyHbbov compared with hamster blood (P50=32 mm Hg) was beneficial during resuscitation. However, an excessive increase in oxygen release between the central and peripheral circulation, as induced by PolyHbhum produced vasoconstriction and hypoperfusion, limiting the benefits of additional oxygen carrying capacity. CONCLUSIONS Appropriately engineered PolyHb will enhance/reinstate oxygenation, without hypertension or vasoconstriction, to be used in situations where blood transfusion is not logistically feasible.


Biophysical Chemistry | 2012

Simulation of NO and O2 transport facilitated by polymerized hemoglobin solutions in an arteriole that takes into account wall shear stress-induced NO production

Yipin Zhou; Pedro Cabrales; Andre F. Palmer

A mathematical model was developed to study nitric oxide (NO) and oxygen (O(2)) transport in an arteriole and surrounding tissues exposed to a mixture of red blood cells (RBCs) and hemoglobin (Hb)-based O(2) carriers (HBOCs). A unique feature of this model is the inclusion of blood vessel wall shear stress-induced production of endothelial-derived NO, which is very sensitive to the viscosity of the RBC and HBOC mixture traversing the blood vessel lumen. Therefore in this study, a series of polymerized bovine Hb (PolyHb) solutions with high viscosity, varying O(2) affinities, NO dioxygenation rate constants and O(2) dissociation rate constants that were previously synthesized and characterized by our group was evaluated via mathematical modeling, in order to investigate the effect of these biophysical properties on the transport of NO and O(2) in an arteriole and its surrounding tissues subjected to anemia with the commercial HBOC Oxyglobin® and cell-free bovine Hb (bHb) serving as appropriate controls. The computer simulation results indicated that transfusion of high viscosity PolyHb solutions promoted blood vessel wall shear stress dependent generation of the vasodilator NO, especially in the blood vessel wall and should transport enough NO inside the smooth muscle layer to activate vasodilation compared to the commercial HBOC Oxyglobin® and cell-free bHb. However, NO scavenging in the arteriole lumen was unavoidable due to the intrinsic high NO dioxygenation rate constant of the HBOCs being studied. This study also observed that all PolyHbs could potentially improve tissue oxygenation under hypoxic conditions, while low O(2) affinity PolyHbs were more effective in oxygenating tissues under normoxic conditions compared with high O(2) affinity PolyHbs. In addition, all ultrahigh molecular weight PolyHbs displayed higher O(2) transfer rates than the commercial HBOC Oxyglobin® and cell-free bHb. Therefore, these results suggest that ultrahigh molecular weight PolyHb solutions could be used as safe and efficacious O(2) carriers for use in transfusion medicine. It also suggests that future generations of PolyHb solutions should possess lower NO dioxygenation reaction rate constants in order to reduce NO scavenging, while maintaining high solution viscosity to take advantage of wall shear stress-induced NO production. Taken together, we suggest that this mathematical model can be used to predict the vasoactivity of HBOCs and help guide the design and optimization of the next generation of HBOCs for use in transfusion medicine.


Archive | 2015

exchange during hypoxia and hyperoxia Nitric oxide regulation of microvascular oxygen

Pedro Cabrales; Amy G. Tsai; M. Intaglietta; Andre F. Palmer; Guoyong Sun; Yipin Zhou; David R. Harris

Collaboration


Dive into the Yipin Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Cabrales

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy G. Tsai

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul W. Buehler

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Yiping Jia

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Cilina Rodriguez

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge