Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where YiPing Chen is active.

Publication


Featured researches published by YiPing Chen.


Development | 2008

Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development

Fenglei He; Wei Xiong; Xueyan Yu; Ramón A. Espinoza-Lewis; Chao Liu; Shuping Gu; Michiru Nishita; Kentaro Suzuki; Gen Yamada; Yasuhiro Minami; YiPing Chen

Tissue and molecular heterogeneities are present in the developing secondary palate along the anteroposterior (AP) axis in mice. Here, we show that Wnt5a and its receptor Ror2 are expressed in a graded manner along the AP axis of the palate. Wnt5a deficiency leads to a complete cleft of the secondary palate, which exhibits distinct phenotypic alterations at histological, cellular and molecular levels in the anterior and posterior regions of the palate. We demonstrate that there is directional cell migration within the developing palate. In the absence of Wnt5a, this directional cell migration does not occur. Genetic studies and in vitro organ culture assays further demonstrate a role for Ror2 in mediating Wnt5a signaling in the regulation of cell proliferation and migration during palate development. Our results reveal distinct regulatory roles for Wnt5a in gene expression and cell proliferation along the AP axis of the developing palate, and an essential role for Wnt5a in the regulation of directional cell migration.


Development | 2005

Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate

Ling Yu; Shuping Gu; Sylvia R. Alappat; Yiqiang Song; Mingquan Yan; Xiaoyun Zhang; Guozhong Zhang; Yiping Jiang; Zunyi Zhang; Yanding Zhang; YiPing Chen

The short stature homeobox gene SHOX is associated with idiopathic short stature in humans, as seen in Turner syndrome and Leri-Weill dyschondrosteosis, while little is known about its close relative SHOX2. We report the restricted expression of Shox2 in the anterior domain of the secondary palate in mice and humans. Shox2-/- mice develop an incomplete cleft that is confined to the anterior region of the palate, an extremely rare type of clefting in humans. The Shox2-/- palatal shelves initiate, grow and elevate normally, but the anterior region fails to contact and fuse at the midline, owing to altered cell proliferation and apoptosis, leading to incomplete clefting within the presumptive hard palate. Accompanied with these cellular alterations is an ectopic expression of Fgf10 and Fgfr2c in the anterior palatal mesenchyme of the mutants. Tissue recombination and bead implantation experiments revealed that signals from the anterior palatal epithelium are responsible for the restricted mesenchymal Shox2 expression. BMP activity is necessary but not sufficient for the induction of palatal Shox2 expression. Our results demonstrate an intrinsic requirement for Shox2 in palatogenesis, and support the idea that palatogenesis is differentially regulated along the anteroposterior axis. Furthermore, our results demonstrate that fusion of the posterior palate can occur independently of fusion in the anterior palate.


Mechanisms of Development | 2000

Transgenically ectopic expression of Bmp4 to the Msx1 mutant dental mesenchyme restores downstream gene expression but represses Shh and Bmp2 in the enamel knot of wild type tooth germ.

Xiang Zhao; Zunyi Zhang; Yiqiang Song; Xiaoyun Zhang; Yanding Zhang; Yuping Hu; Sigurd H. Fromm; YiPing Chen

Bmp4 is a downstream gene of Msx1 in early mouse tooth development. In this study, we introduced the Msx1-Bmp4 transgenic allele to the Msx1 mutants in which tooth development is arrested at the bud stage in an effort of rescuing Msx1 mutant tooth phenotype in vivo. Ectopic expression of a Bmp4 transgene driven by the mouse Msx1promoter in the dental mesenchyme restored the expression of Lef-1 and Dlx2 but neither Fgf3 nor syndecan-1 in the Msx1 mutant molar tooth germ. The mutant phenotype of molar but not incisor could be partially rescued to progress to the cap stage. The Msx1-Bmp4 transgene was also able to rescue the alveolar processes and the neonatal lethality of the Msx1 mutants. In contrast, overexpression of Bmp4 in the wild type molar mesenchyme down-regulated Shh and Bmp2 expression in the enamel knot, the putative signaling center for tooth patterning, but did not produce a tooth phenotype. These results indicate that Bmp4 can bypass Msx1 function to partially rescue molar tooth development in vivo, and to support alveolar process formation. Expression of Shh and Bmp2 in the enamel knot may not represent critical signals for tooth patterning.


Developmental Dynamics | 1999

Msx1 is required for the induction of Patched by Sonic hedgehog in the mammalian tooth germ

Yanding Zhang; Xiang Zhao; Yueping Hu; Tara St. Amand; Meifeng Zhang; Rajee Ramamurthy; Mengsheng Qiu; YiPing Chen

We have used the mouse developing tooth germ as a model system to explore the transmission of Sonic hedgehog (Shh) signal in the induction of Patched (Ptc). In the early developing molar tooth germ, Shh is expressed in the dental epithelium, and the transcripts of Shh downstream target genes Ptc and Gli1 are expressed in dental epithelium as well as adjacent mesenchymal tissue. The homeobox gene Msx1 is also expressed in the dental mesenchyme of the molar tooth germ at this time. We show here that the expression of Ptc, but not Gli1, was downregulated in the dental mesenchyme of Msx1 mutants. In wild‐type E11.0 molar tooth mesenchyme SHH‐soaked beads induced the expression of Ptc and Gli1. However, in Msx1 mutant dental mesenchyme SHH‐soaked beads were able to induce Gli1 but failed to induce Ptc expression, indicating a requirement for Msx1 in the induction of Ptc by SHH. Moreover, we show that another signaling molecule, BMP4, was able to induce Ptc expression in wild‐type dental mesenchyme, but induced a distinct expression pattern of Ptc in the Msx1 mutant molar mesenchyme. We conclude that in the context of the tooth germ Msx1 is a component of the Shh signaling pathway that leads to Ptc induction. Our results also suggest that the precise pattern of Ptc expression in the prospective tooth‐forming region is controlled and coordinated by at least two inductive signaling pathways. Dev Dyn 1999;215:45–53.


Developmental Biology | 2010

Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis

Fenglei He; Wei Xiong; Ying Wang; Maiko Matsui; Xueyan Yu; Yang Chai; John Klingensmith; YiPing Chen

BMP signaling plays many important roles during organ development, including palatogenesis. Loss of BMP signaling leads to cleft palate formation. During development, BMP activities are finely tuned by a number of modulators at the extracellular and intracellular levels. Among the extracellular BMP antagonists is Noggin, which preferentialy binds to BMP2, BMP4 and BMP7, all of which are expressed in the developing palatal shelves. Here we use targeted Noggin mutant mice as a model for gain of BMP signaling function to investigate the role of BMP signaling in palate development. We find prominent Noggin expression in the palatal epithelium along the anterior-posterior axis during early palate development. Loss of Noggin function leads to overactive BMP signaling, particularly in the palatal epithelium. This results in disregulation of cell proliferation, excessive cell death, and changes in gene expression, leading to formation of complete palatal cleft. The excessive cell death in the epithelium disrupts the palatal epithelium integrity, which in turn leads to an abnormal palate-mandible fusion and prevents palatal shelf elevation. This phenotype is recapitulated by ectopic expression of a constitutively active form of BMPR-IA but not BMPR-IB in the epithelium of the developing palate; this suggests a role for BMPR-IA in mediating overactive BMP signaling in the absence of Noggin. Together with the evidence that overexpression of Noggin in the palatal epithelium does not cause a cleft palate defect, we conclude from our results that Noggin mediated modulation of BMP signaling is essential for palatal epithelium integrity and for normal palate development.


Developmental Biology | 2011

BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development.

Lu Li; Minkui Lin; Ying Wang; Peter Cserjesi; Zhi Chen; YiPing Chen

The BMP signaling plays a pivotal role in the development of craniofacial organs, including the tooth and palate. BmprIa and BmprIb encode two type I BMP receptors that are primarily responsible for BMP signaling transduction. We investigated mesenchymal tissue-specific requirement of BmprIa and its functional redundancy with BmprIb during the development of mouse tooth and palate. BmprIa and BmprIb exhibit partially overlapping and distinct expression patterns in the developing tooth and palatal shelf. Neural crest-specific inactivation of BmprIa leads to formation of an unusual type of anterior clefting of the secondary palate, an arrest of tooth development at the bud/early cap stages, and severe hypoplasia of the mandible. Defective tooth and palate development is accompanied by the down-regulation of BMP-responsive genes and reduced cell proliferation levels in the palatal and dental mesenchyme. To determine if BmprIb could substitute for BmprIa during tooth and palate development, we expressed a constitutively active form of BmprIb (caBmprIb) in the neural crest cells in which BmprIa was simultaneously inactivated. We found that substitution of BmprIa by caBmprIb in neural rest cells rescues the development of molars and maxillary incisor, but the rescued teeth exhibit a delayed odontoblast and ameloblast differentiation. In contrast, caBmprIb fails to rescue the palatal and mandibular defects including the lack of lower incisors. Our results demonstrate an essential role for BmprIa in the mesenchymal component and a limited functional redundancy between BmprIa and BmprIb in a tissue-specific manner during tooth and palate development.


Developmental Biology | 2009

Hand2 is required in the epithelium for palatogenesis in mice

Wei Xiong; Fenglei He; Yuka Morikawa; Xueyan Yu; Zunyi Zhang; Yu Lan; Rulang Jiang; Peter Cserjesi; YiPing Chen

The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in the development of multiple organs, including craniofacial organs. Mice carrying Hand2 hypomorphic alleles (Hand2(LoxP/-)) display a cleft palate phenotype. A specific deletion of the Hand2 branchial arch-specific enhancer also leads to a hypoplastic mandible and cleft palate formation in mice. However, the underlying mechanism of Hand2 regulation of palate development remains unknown. Here we show that Hand2 is expressed in both the epithelium and mesenchyme of the developing palate. While mesenchymal specific inactivation of Hand2 has no impact on palate development, epithelial specific deletion of Hand2 creates a cleft palate phenotype. Hand2 appears to exert distinct roles in the anterior and posterior palate. In the anterior palate of Hand2(LoxP/-) mice, premature death of periderm cells and a down-regulation of Shh are observed in the medial edge epithelium (MEE), accompanied by a decreased level of cell proliferation in the palatal mesenchyme. In the posterior palate, a lower dose of Hand2 causes aberrant periderm cell death on the surface of the epithelium, triggering abnormal fusion between the palatal shelf and mandible and preventing palatal shelf elevation. We further demonstrate that BMP activities are essential for the expression of Hand2 in the palate. We conclude that Hand2 is an intrinsic regulator in the epithelium and is required for palate development.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Pitx2-microRNA pathway that delimits sinoatrial node development and inhibits predisposition to atrial fibrillation

Jun Wang; Yan Bai; Na Li; Wenduo Ye; Min Zhang; Stephanie B. Greene; Ye Tao; YiPing Chen; Xander H.T. Wehrens; James F. Martin

Significance Atrial Fibrillation (AF) is the most common sustained cardiac arrhythmia in the human population. It is critical to elucidate the molecular mechanisms underlying AF, given that the prevalence of AF is expected to dramatically increase as the human population ages. We identified a microRNA (miR)-regulated genetic pathway that delimits sinoatrial node development and inhibits AF. To our knowledge, our data are the first genetic evidence showing that miR deletion results in AF predisposition. Moreover, to our knowledge, our data are the first demonstration that sinoatrial node regulatory genes are regulated by miRs. Our findings suggest attractive therapeutic targets to treat AF given that miR-based therapeutics are feasible using miR antagonists and mimics. The molecular mechanisms underlying atrial fibrillation, the most common sustained cardiac arrhythmia, remain poorly understood. Genome-wide association studies uncovered a major atrial fibrillation susceptibility locus on human chromosome 4q25 in close proximity to the paired-like homeodomain transcription factor 2 (Pitx2) homeobox gene. Pitx2, a target of the left-sided Nodal signaling pathway that initiates early in development, represses the sinoatrial node program and pacemaker activity on the left side. To address the mechanisms underlying this repressive activity, we hypothesized that Pitx2 regulates microRNAs (miRs) to repress the sinoatrial node genetic program. MiRs are small noncoding RNAs that regulate gene expression posttranscriptionally. Using an integrated genomic approach, we discovered that Pitx2 positively regulates miR-17-92 and miR-106b-25. Intracardiac electrical stimulation revealed that both miR-17-92 and miR-106b-25 deficient mice exhibit pacing-induced atrial fibrillation. Furthermore electrocardiogram telemetry revealed that mice with miR-17-92 cardiac-specific inactivation develop prolonged PR intervals whereas mice with miR-17-92 cardiac-specific inactivation and miR-106b-25 heterozygosity develop sinoatrial node dysfunction. Both arrhythmias are risk factors for atrial fibrillation in humans. Importantly, miR-17-92 and miR-106b-25 directly repress genes, such as Shox2 and Tbx3, that are required for sinoatrial node development. Together, to our knowledge, these findings provide the first genetic evidence for an miR loss-of-function that increases atrial fibrillation susceptibility.


Developmental Dynamics | 2006

Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development.

Yiqiang Song; Zunyi Zhang; Xueyan Yu; Minquan Yan; Xiaoyun Zhang; Shuping Gu; Thomas Stuart; Chao Liu; Jakob Reiser; Yanding Zhang; YiPing Chen

RNA interference (RNAi) has recently become a powerful tool to silence gene expression in mammalian cells, but its application in assessing gene function in mammalian developing organs remains highly limited. Here we describe several unique developmental properties of the mouse molar germ. Embryonic molar mesenchyme, but not the incisor mesenchyme, once dissociated into single cell suspension and re‐aggregated, retains its odontogenic potential, the capability of a tissue to instruct an adjacent tissue to initiate tooth formation. Dissociated molar mesenchymal cells, even after being plated in cell culture, retain odontogenic competence, the capability of a tissue to respond to odontogenic signals and to support tooth formation. Most interestingly, while dissociated epithelial and mesenchymal cells of molar tooth germ are mixed and re‐aggregated, the epithelial cells are able to sort out from the mesenchymal cells and organize into a well‐defined dental epithelial structure, leading to the formation of a well‐differentiated tooth organ after sub‐renal culture. These unique molar developmental properties allow us to develop a strategy using a lentivirus‐mediated RNAi approach to silence gene expression in dental mesenchymal cells and assess gene function in tooth development. We show that knockdown of Msx1 or Dlx2 expression in the dental mesenchyme faithfully recapitulates the tooth phenotype of their targeted mutant mice. Silencing of Barx1 expression in the dental mesenchyme causes an arrest of tooth development at the bud stage, demonstrating a crucial role for Barx1 in tooth formation. Our studies have established a reliable and rapid assay that would permit large‐scale analysis of gene function in mammalian tooth development. Developmental Dynamics 235:1334–1344, 2006.


Mechanisms of Development | 2003

Msx1/Bmp4 genetic pathway regulates mammalian alveolar bone formation via induction of Dlx5 and Cbfa1.

Zunyi Zhang; Yiqiang Song; Xiaoyun Zhang; Jean Tang; Jinkun Chen; YiPing Chen

In the developing mammalian tooth, the cranial neural crest derived dental mesenchyme consists of the dental papilla and dental follicle. The dental papilla gives rise to odontoblasts and dental pulp and the dental follicle gives rise to the periodontium, including the osteoblasts that contribute to the alveolar process. The alveolar process is a specialized intramembranous bone that forms the primary support structure for the dentition. The Msx1 gene controls many aspects of craniofacial development, as evidenced by craniofacial abnormalities seen in Msx1(-/-) mice, including the arrest of tooth development and the absence of the alveolar bone. Previous studies demonstrated that ectopic expression of Bmp4, a downstream target of Msx1, in the Msx1(-/-) dental mesenchyme rescued alveolar bone formation. Here we confirm an early requirement of BMP activity for alveolar bone formation. We show that the expression of Cbfa1 and Dlx5, two genes encode transcription factors that are critical for bone differentiation, overlaps with that of Msx1 and Bmp4 in the developing tooth and alveolar process. We have demonstrated that Dlx5 and Cbfa1 expression is down-regulated in Msx1(-/-) dental mesenchyme and that Msx1 and Bmp4 expression are unaltered in Cbfa1(-/-) mice. These data place Dlx5 and Cbfa1 downstream from the Msx1/Bmp4 in the genetic pathway that regulates tooth development. Ectopic expression of Bmp4 in Msx1 mutants restores the expression of Dlx5, but not Cbfa1, in the dental mesenchyme, and rescues the expression of both Dlx5 and Cbfa1 in the developing alveolar bone. Therefore, the early expression of Cfba1 in the dental mesenchyme appears dispensable for the development of the alveolar bone. Taken together with in vitro gene induction studies, our results demonstrate that BMP4 controls Dlx5 expression in dental mesenchyme, and functions upstream to both Dlx5 and Cbfa1 to regulate alveolar bone formation during tooth development.

Collaboration


Dive into the YiPing Chen's collaboration.

Top Co-Authors

Avatar

Yanding Zhang

Fujian Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanding Zhang

Fujian Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuefeng Hu

Fujian Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge