Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yiping He is active.

Publication


Featured researches published by Yiping He.


Proceedings of the National Academy of Sciences of the United States of America | 2013

TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal

Patrick J. Killela; Zachary J. Reitman; Yuchen Jiao; Chetan Bettegowda; Nishant Agrawal; Luis A. Diaz; Allan H. Friedman; Henry S. Friedman; Gary L. Gallia; Beppino C. Giovanella; Arthur P. Grollman; Tong-Chuan He; Yiping He; Ralph H. Hruban; George I. Jallo; Nils Mandahl; Alan K. Meeker; Fredrik Mertens; George J. Netto; B. Ahmed Rasheed; Gregory J. Riggins; Thomas A. Rosenquist; Mark Schiffman; Ie Ming Shih; Dan Theodorescu; Michael Torbenson; Victor E. Velculescu; Tian Li Wang; Nicolas Wentzensen; Laura D. Wood

Malignant cells, like all actively growing cells, must maintain their telomeres, but genetic mechanisms responsible for telomere maintenance in tumors have only recently been discovered. In particular, mutations of the telomere binding proteins alpha thalassemia/mental retardation syndrome X-linked (ATRX) or death-domain associated protein (DAXX) have been shown to underlie a telomere maintenance mechanism not involving telomerase (alternative lengthening of telomeres), and point mutations in the promoter of the telomerase reverse transcriptase (TERT) gene increase telomerase expression and have been shown to occur in melanomas and a small number of other tumors. To further define the tumor types in which this latter mechanism plays a role, we surveyed 1,230 tumors of 60 different types. We found that tumors could be divided into types with low (<15%) and high (≥15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker that may be useful for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.


Science | 2011

The genetic landscape of the childhood cancer medulloblastoma

D. Williams Parsons; Meng Li; Xiaosong Zhang; Siân Jones; Rebecca J. Leary; Jimmy Lin; Simina M. Boca; Hannah Carter; Josue Samayoa; Chetan Bettegowda; Gary L. Gallia; George I. Jallo; Zev A. Binder; Yuri Nikolsky; James Hartigan; Doug Smith; Daniela S. Gerhard; Daniel W. Fults; Scott R. VandenBerg; Mitchel S. Berger; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Carlos Clara; Peter C. Phillips; Jane E. Minturn; Jaclyn A. Biegel; Alexander R. Judkins; Adam C. Resnick; Phillip B. Storm; Tom Curran

Genomic analysis of a childhood cancer reveals markedly fewer mutations than what is typically seen in adult cancers. Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.


Science | 2011

Altered telomeres in tumors with ATRX and DAXX mutations.

Christopher M. Heaphy; Roeland F. De Wilde; Yuchen Jiao; Alison P. Klein; Barish H. Edil; Chanjuan Shi; Chetan Bettegowda; Fausto J. Rodriguez; Charles G. Eberhart; Sachidanand Hebbar; G. Johan A. Offerhaus; Roger E. McLendon; B. Ahmed Rasheed; Yiping He; Hai Yan; Darell D. Bigner; Sueli Mieko Oba-Shinjo; Suely Kazue Nagahashi Marie; Gregory J. Riggins; Kenneth W. Kinzler; Bert Vogelstein; Ralph H. Hruban; Anirban Maitra; Nickolas Papadopoulos; Alan K. Meeker

Chromosome tips seem to be maintained by an unusual mechanism in tumors that have mutations in chromatin remodeling genes. The proteins encoded by ATRX and DAXX participate in chromatin remodeling at telomeres and other genomic sites. Because inactivating mutations of these genes are common in human pancreatic neuroendocrine tumors (PanNETs), we examined the telomere status of these tumors. We found that 61% of PanNETs displayed abnormal telomeres that are characteristic of a telomerase-independent telomere maintenance mechanism termed ALT (alternative lengthening of telomeres). All of the PanNETs exhibiting these abnormal telomeres had ATRX or DAXX mutations or loss of nuclear ATRX or DAXX protein. ATRX mutations also correlate with abnormal telomeres in tumors of the central nervous system. These data suggest that an alternative telomere maintenance function may operate in human tumors with alterations in the ATRX or DAXX genes.


Science | 2008

The Antisense Transcriptomes of Human Cells

Yiping He; Bert Vogelstein; Victor E. Velculescu; Nickolas Papadopoulos; Kenneth W. Kinzler

Transcription in mammalian cells can be assessed at a genome-wide level, but it has been difficult to reliably determine whether individual transcripts are derived from the plus or minus strands of chromosomes. This distinction can be critical for understanding the relationship between known transcripts (sense) and the complementary antisense transcripts that may regulate them. Here, we describe a technique that can be used to (i) identify the DNA strand of origin for any particular RNA transcript, and (ii) quantify the number of sense and antisense transcripts from expressed genes at a global level. We examined five different human cell types and in each case found evidence for antisense transcripts in 2900 to 6400 human genes. The distribution of antisense transcripts was distinct from that of sense transcripts, was nonrandom across the genome, and differed among cell types. Antisense transcripts thus appear to be a pervasive feature of human cells, which suggests that they are a fundamental component of gene regulation.


Nature | 2010

Heteroplasmic mitochondrial DNA mutations in normal and tumour cells

Yiping He; Jian Wu; Devin Dressman; Christine A. Iacobuzio-Donahue; Sanford D. Markowitz; Victor E. Velculescu; Luis A. Diaz; Kenneth W. Kinzler; Bert Vogelstein; Nickolas Papadopoulos

The presence of hundreds of copies of mitochondrial DNA (mtDNA) in each human cell poses a challenge for the complete characterization of mtDNA genomes by conventional sequencing technologies. Here we describe digital sequencing of mtDNA genomes with the use of massively parallel sequencing-by-synthesis approaches. Although the mtDNA of human cells is considered to be homogeneous, we found widespread heterogeneity (heteroplasmy) in the mtDNA of normal human cells. Moreover, the frequency of heteroplasmic variants varied considerably between different tissues in the same individual. In addition to the variants identified in normal tissues, cancer cells harboured further homoplasmic and heteroplasmic mutations that could also be detected in patient plasma. These studies provide insights into the nature and variability of mtDNA sequences and have implications for mitochondrial processes during embryogenesis, cancer biomarker development and forensic analysis. In particular, they demonstrate that individual humans are characterized by a complex mixture of related mitochondrial genotypes rather than a single genotype.


Nature Methods | 2006

BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions

Frank Diehl; Meng Li; Yiping He; Kenneth W. Kinzler; Bert Vogelstein; Devin Dressman

The most important biotechnological advances made in the 20th century involved methods that converted single DNA molecules into populations of identical DNA molecules. The first wave of techniques used cells (cloning)1 and the second used PCR2. Cloning was advantageous because the populations arising from individual molecules were inherently separated. In contrast, each template required individual compartments (tubes) for PCR-based methods if separate products were desired. Emulsion PCR overcame this disadvantage by miniaturizing the compartments so that millions of templates could be individually amplified within a single tube3. BEAMing (beads, emulsions, amplification and magnetics) is a process built on emulsion PCR that (i) includes beads within the compartments and (ii) ensures that one strand of the PCR product is bound to the beads4. After amplification, each compartment contains a bead that is coated with thousands of copies of the single DNA molecule originally present. These beads can be recovered with a magnet or by centrifugation. Beads obtained via BEAMing accurately reflect the DNA diversity present in template populations and this method can be used to determine what fraction of a DNA population contains a specific mutation5. Because each bead contains thousands of molecules of the identical sequence, the signal to noise ratio obtained by hybridization or enzymatic assays is extremely high. Millions of beads can be analyzed within minutes using flow cytometry or optical scanning instruments. The DNA bound to beads also provides excellent templates for high-throughput sequencing. In this protocol we describe detailed methods for BEAMing, including a new technique for simultaneously generating 192 emulsions suitable for BEAMing.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome

Zachary J. Reitman; Genglin Jin; Edward D. Karoly; Ivan Spasojevic; Jian Yang; Kenneth W. Kinzler; Yiping He; Darell D. Bigner; Bert Vogelstein; Hai Yan

Point mutations of the NADP+-dependent isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) occur early in the pathogenesis of gliomas. When mutated, IDH1 and IDH2 gain the ability to produce the metabolite (R)-2-hydroxyglutarate (2HG), but the downstream effects of mutant IDH1 and IDH2 proteins or of 2HG on cellular metabolism are unknown. We profiled >200 metabolites in human oligodendroglioma (HOG) cells to determine the effects of expression of IDH1 and IDH2 mutants. Levels of amino acids, glutathione metabolites, choline derivatives, and tricarboxylic acid (TCA) cycle intermediates were altered in mutant IDH1- and IDH2-expressing cells. These changes were similar to those identified after treatment of the cells with 2HG. Remarkably, N-acetyl-aspartyl-glutamate (NAAG), a common dipeptide in brain, was 50-fold reduced in cells expressing IDH1 mutants and 8.3-fold reduced in cells expressing IDH2 mutants. NAAG also was significantly lower in human glioma tissues containing IDH mutations than in gliomas without such mutations. These metabolic changes provide clues to the pathogenesis of tumors associated with IDH gene mutations.


Immunity | 2002

Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1.

David J. Izon; Yiping He; Andrew P. Weng; Fredrick G. Karnell; Vytas Patriub; Lanwei Xu; Sonia Bakkour; Carlos G. Rodriguez; David Allman

Notch1 signaling drives T cell development at the expense of B cell development from a common precursor, an effect that is dependent on a C-terminal Notch1 transcriptional activation domain. The function of Deltex1, initially identified as a positive modulator of Notch function in a genetic screen in Drosophila, is poorly understood. We now demonstrate that, in contrast to Notch1, enforced expression of Deltex1 in hematopoietic progenitors results in B cell development at the expense of T cell development in fetal thymic organ culture and in vivo. Consistent with these effects, Deltex1 antagonizes Notch1 signaling in transcriptional reporter assays by inhibiting coactivator recruitment. These data suggest that a balance of inductive Notch1 signals and inhibitory signals mediated through Deltex1 and other modulators regulate T-B lineage commitment.


Nature Biotechnology | 2009

Sensitive digital quantification of DNA methylation in clinical samples

Meng Li; Wei Dong Chen; Nickolas Papadopoulos; Steven N. Goodman; Niels Christian Bjerregaard; Søren Laurberg; Bernard Levin; Hartmut Juhl; Nadir Arber; Helen Moinova; Kris Durkee; Kerstin Schmidt; Yiping He; Frank Diehl; Victor E. Velculescu; Shibin Zhou; Luis A. Diaz; Kenneth W. Kinzler; Sanford D. Markowitz; Bert Vogelstein

Analysis of abnormally methylated genes is increasingly important in basic research and in the development of cancer biomarkers. We have developed methyl-BEAMing technology to enable absolute quantification of the number of methylated molecules in a sample. Individual DNA fragments are amplified and analyzed either by flow cytometry or next-generation sequencing. We demonstrate enumeration of as few as one methylated molecule in ∼5,000 unmethylated molecules in DNA from plasma or fecal samples. Using methylated vimentin as a biomarker in plasma samples, methyl-BEAMing detected 59% of cancer cases. In early-stage colorectal cancers, this sensitivity was four times more than that obtained by assaying serum-carcinoembryonic antigen (CEA). With stool samples, methyl-BEAMing detected 41% of cancers and 45% of advanced adenomas. In addition to diagnostic and prognostic applications, this digital quantification of rare methylation events should be applicable to preclinical assessment of new epigenetic biomarkers and quantitative analyses in epigenetic research.


Immunity | 2004

Notch 1 Signaling Regulates Peripheral T Cell Activation

Todd N. Eagar; Qizhi Tang; Michael S. Wolfe; Yiping He; Jeffrey A. Bluestone

Notch signaling has been identified as an important regulator of leukocyte differentiation and thymic maturation. Less is known about the role of Notch signaling in regulating mature T cells. We examined the role of Notch 1 in regulating peripheral T cell activity in vitro and in vivo. Coligation of Notch 1 together with TCR and CD28 resulted in a dramatic inhibition of T cell activation, proliferation, and cytokine production. This effect was dependent on presenilin activity and induced the expression of HES-1, suggestive of Notch 1 signaling. Biochemical analysis demonstrated an inhibition of AKT and GSK3beta phosphorylation following Notch 1 engagement while other biochemical signals such as TCR and ERK phosphorylation remained intact. Similar effects were observed in vivo in an adoptive transfer model. Therefore, Notch 1 signaling may play an important role in regulating naive T cell activation and homeostasis.

Collaboration


Dive into the Yiping He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert Vogelstein

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge