Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yiqi Seow is active.

Publication


Featured researches published by Yiqi Seow.


Nature Biotechnology | 2011

Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes

Lydia Alvarez-Erviti; Yiqi Seow; HaiFang Yin; Corinne Betts; Samira Lakhal; Matthew J.A. Wood

To realize the therapeutic potential of RNA drugs, efficient, tissue-specific and nonimmunogenic delivery technologies must be developed. Here we show that exosomes—endogenous nano-vesicles that transport RNAs and proteins—can deliver short interfering (si)RNA to the brain in mice. To reduce immunogenicity, we used self-derived dendritic cells for exosome production. Targeting was achieved by engineering the dendritic cells to express Lamp2b, an exosomal membrane protein, fused to the neuron-specific RVG peptide. Purified exosomes were loaded with exogenous siRNA by electroporation. Intravenously injected RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not observed. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimers disease, in wild-type mice.


Neurobiology of Disease | 2011

Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission

Lydia Alvarez-Erviti; Yiqi Seow; A. H. V. Schapira; Chris Gardiner; Ian L. Sargent; Matthew J.A. Wood; Jm Cooper

Alpha-synuclein aggregation plays a central role in Parkinsons disease pathology. Direct transmission of alpha-synuclein from pathologically affected to healthy unaffected neurons may be important in the anatomical spread of the disease through the nervous system. We have demonstrated that exosomes released from alpha-synuclein over-expressing SH-SY5Y cells contained alpha-synuclein and these exosomes were capable of efficiently transferring alpha-synuclein protein to normal SH-SY5Y cells. Moreover, the incubation of cells with ammonium chloride or bafilomycin A1 to produce the lysosomal dysfunction recently reported in Parkinsons disease led to an increase in the release of alpha-synuclein in exosomes and a concomitant increase in alpha-synuclein transmission to recipient cells. This study clearly demonstrates the importance of exosomes in both the release of alpha synuclein and its transmission between cells and suggests that factors associated with PD pathology accelerate this process. These mechanisms may play an important role in PD pathology and provide a suitable target for therapeutic intervention.


Nature Protocols | 2012

Exosome-mediated delivery of siRNA in vitro and in vivo

Samir El-Andaloussi; Yi Lee; Samira Lakhal-Littleton; Jinghuan Li; Yiqi Seow; Chris Gardiner; Lydia Alvarez-Erviti; I L Sargent; Matthew J.A. Wood

The use of small interfering RNAs (siRNAs) to induce gene silencing has opened a new avenue in drug discovery. However, their therapeutic potential is hampered by inadequate tissue-specific delivery. Exosomes are promising tools for drug delivery across different biological barriers. Here we show how exosomes derived from cultured cells can be harnessed for delivery of siRNA in vitro and in vivo. This protocol first describes the generation of targeted exosomes through transfection of an expression vector, comprising an exosomal protein fused with a peptide ligand. Next, we explain how to purify and characterize exosomes from transfected cell supernatant. Next, we detail crucial steps for loading siRNA into exosomes. Finally, we outline how to use exosomes to efficiently deliver siRNA in vitro and in vivo in mouse brain. Examples of anticipated results in which exosome-mediated siRNA delivery is evaluated by functional assays and imaging are also provided. The entire protocol takes ∼3 weeks.


Molecular Therapy | 2009

Biological Gene Delivery Vehicles: Beyond Viral Vectors

Yiqi Seow; Matthew J.A. Wood

Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications.


Human Molecular Genetics | 2008

Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function

HaiFang Yin; Hong M. Moulton; Yiqi Seow; Corinne Boyd; Jordan Boutilier; Patrick L. Iverson; Matthew J.A. Wood

Abstract Antisense oligonucleotides (AOs) have the potential to induce functional dystrophin protein expression via exon skipping by restoring in-frame transcripts in the majority of patients suffering from Duchenne muscular dystrophy (DMD). AOs of morpholino phosphoroamidate (PMO) and 2′-O-methyl phosphorothioate RNA (2′Ome RNA) chemistry have been shown to restore dystrophin expression in skeletal muscle but not in heart, following high-dose systemic delivery in murine models of muscular dystrophy (mdx). Exploiting the cell transduction properties of two basic arginine-rich cell penetrating peptides, we demonstrate widespread systemic correction of dystrophin expression in body-wide muscles and cardiac tissue in adult dystrophic mdx mice, with a single low-dose injection of peptide-conjugated PMO AO. This approach was sufficient to restore uniform, high-level dystrophin protein expression in peripheral muscle and cardiac tissue, with robust sarcolemmal relocalization of the dystrophin-associated protein complex and functional improvement in muscle. Peptide-conjugated AOs therefore have significant potential for systemic correction of the DMD phenotype.


Human Molecular Genetics | 2009

A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice

HaiFang Yin; Hong M. Moulton; Corinne Betts; Yiqi Seow; Jordan Boutilier; Patrick L. Iverson; Matthew J.A. Wood

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that abolish the synthesis of dystrophin protein. Antisense oligonucleotides (AOs) targeted to trigger excision of an exon bearing a mutant premature stop codon in the DMD transcript have been shown to skip the mutated exon and partially restore functional dystrophin protein in dystrophin-deficient mdx mice. To fully exploit the therapeutic potential of this method requires highly efficient systemic AO delivery to multiple muscle groups, to modify the disease process and restore muscle function. While systemic delivery of naked AOs in DMD animal models requires high doses and is of relatively poor efficiency, we and others have recently shown that short arginine-rich peptide-AO conjugates can dramatically improve in vivo DMD splice correction. Here we report for the first time that a chimeric fusion peptide (B-MSP-PMO) consisting of a muscle-targeting heptapeptide (MSP) fused to an arginine-rich cell-penetrating peptide (B-peptide) and conjugated to a morpholino oligomer (PMO) AO directs highly efficient systemic dystrophin splice correction in mdx mice. With very low systemic doses, we demonstrate that B-MSP-PMO restores high-level, uniform dystrophin protein expression in multiple peripheral muscle groups, yielding functional correction and improvement of the mdx dystrophic phenotype. Our data demonstrate proof-of-concept for this chimeric peptide approach in DMD splice correction therapy and is likely to have broad application.


Molecular Therapy | 2010

Novel RNA-based strategies for therapeutic gene silencing.

Christopher R. Sibley; Yiqi Seow; Matthew J.A. Wood

The past decade has seen intense scientific interest in non-coding RNAs. In particular, the discovery and subsequent exploitation of gene silencing via RNA interference (RNAi) has revolutionized the way in which gene expression is now studied and understood. It is now well established that post-transcriptional gene silencing (PTGS) by the microRNA (miRNA) and other RNAi-associated pathways represents an essential layer of complexity to gene regulation. Gene silencing using RNAi additionally demonstrates huge potential as a therapeutic strategy for eliminating pathogenic gene expression. Yet despite the early promise and excitement of gene-specific silencing, several critical hurdles remain to be overcome before widespread clinical adoption. These include off-target effects, toxicity due to saturation of the endogenous RNAi functions, limited duration of silencing, and effective targeted delivery. In recent years, a range of novel strategies for producing RNA-mediated silencing have been developed that can circumvent many of these hurdles, including small internally segmented interfering RNAs, tandem hairpin RNAs, and pri-miRNA cluster mimics. This review discusses RNA-mediated silencing in light of this recent research, and highlights the benefits and limitations conferred by these novel gene-silencing strategies.


Cell Death and Disease | 2013

Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson's disease.

Lydia Alvarez-Erviti; Yiqi Seow; A. H. V. Schapira; Maria C. Rodriguez-Oroz; Jose A. Obeso; Jm Cooper

The presence of α-synuclein aggregates in the characteristic Lewy body pathology seen in idiopathic Parkinson’s disease (PD), together with α-synuclein gene mutations in familial PD, places α-synuclein at the center of PD pathogenesis. Decreased levels of the chaperone-mediated autophagy (CMA) proteins LAMP-2A and hsc70 in PD brain samples suggests compromised α-synuclein degradation by CMA may underpin the Lewy body pathology. Decreased CMA protein levels were not secondary to the various pathological changes associated with PD, including mitochondrial respiratory chain dysfunction, increased oxidative stress and proteasomal inhibition. However, decreased hsc70 and LAMP-2A protein levels in PD brains were associated with decreases in their respective mRNA levels. MicroRNA (miRNA) deregulation has been reported in PD brains and we have identified eight miRNAs predicted to regulate LAMP-2A or hsc70 expression that were reported to be increased in PD. Using a luciferase reporter assay in SH-SY5Y cells, four and three of these miRNAs significantly decreased luciferase activity expressed upstream of the lamp-2a and hsc70 3′UTR sequences respectively. We confirmed that transfection of these miRNAs also decreased endogenous LAMP-2A and hsc70 protein levels respectively and resulted in significant α-synuclein accumulation. The analysis of PD brains confirmed that six and two of these miRNAs were significantly increased in substantia nigra compacta and amygdala respectively. These data support the hypothesis that decreased CMA caused by miRNA-induced downregulation of CMA proteins plays an important role in the α-synuclein pathology associated with PD, and opens up a new avenue to investigate PD pathogenesis.


Molecular Therapy | 2011

Pip5 Transduction Peptides Direct High Efficiency Oligonucleotide-mediated Dystrophin Exon Skipping in Heart and Phenotypic Correction in mdx Mice

HaiFang Yin; Amer F. Saleh; Corinne Betts; Patrizia Camelliti; Yiqi Seow; Shirin Ashraf; Andrey A. Arzumanov; Suzan M. Hammond; Thomas Merritt; Michael J. Gait; Matthew J.A. Wood

Induced splice modulation of pre-mRNAs shows promise to correct aberrant disease transcripts and restore functional protein and thus has therapeutic potential. Duchenne muscular dystrophy (DMD) results from mutations that disrupt the DMD gene open reading frame causing an absence of dystrophin protein. Antisense oligonucleotide (AO)-mediated exon skipping has been shown to restore functional dystrophin in mdx mice and DMD patients treated intramuscularly in two recent phase 1 clinical trials. Critical to the therapeutic success of AO-based treatment will be the ability to deliver AOs systemically to all affected tissues including the heart. Here, we report identification of a series of transduction peptides (Pip5) as AO conjugates for enhanced systemic and particularly cardiac delivery. One of the lead peptide-AO conjugates, Pip5e-AO, showed highly efficient exon skipping and dystrophin production in mdx mice with complete correction of the aberrant DMD transcript in heart, leading to >50% of the normal level of dystrophin in heart. Mechanistic studies indicated that the enhanced activity of Pip5e-phosphorodiamidate morpholino (PMO) is partly explained by more efficient nuclear delivery. Pip5 series derivatives therefore have significant potential for advancing the development of exon skipping therapies for DMD and may have application for enhanced cardiac delivery of other biotherapeutics.


Nucleic Acids Research | 2012

The biogenesis and characterization of mammalian microRNAs of mirtron origin

Christopher R. Sibley; Yiqi Seow; Sheena Saayman; Krijn K. Dijkstra; Samir El Andaloussi; Marc S. Weinberg; Matthew J.A. Wood

Mirtrons, short hairpin pre-microRNA (miRNA) mimics directly produced by intronic splicing, have recently been identified and experimentally confirmed in invertebrates. While there is evidence to suggest several mammalian miRNAs have mirtron origins, this has yet to be experimentally demonstrated. Here, we characterize the biogenesis of mammalian mirtrons by ectopic expression of splicing-dependent mirtron precursors. The putative mirtrons hsa-miR-877, hsa-miR-1226 and mmu-miR-1224 were designed as introns within eGFP. Correct splicing and function of these sequences as introns was shown through eGFP fluorescence and RT–PCR, while all mirtrons suppressed perfectly complementary luciferase reporter targets to levels similar to that of corresponding independently expressed pre-miRNA controls. Splicing-deficient mutants and disruption of key steps in miRNA biogenesis demonstrated that mirtron-mediated gene knockdown was splicing-dependent, Drosha-independent and had variable dependence on RNAi pathway elements following pre-miRNA formation. The silencing effect of hsa-miR-877 was further demonstrated to be mediated by the generation of short anti-sense RNA species expressed with low abundance. Finally, the mammalian mirtron hsa-miR-877 was shown to reduce mRNA levels of an endogenous transcript containing hsa-miR-877 target sites in neuronal SH-SY5Y cells. This work confirms the mirtron origins of three mammalian miRNAs and suggests that they are a functional class of splicing-dependent miRNAs which are physiologically active.

Collaboration


Dive into the Yiqi Seow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amer F. Saleh

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Gait

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge