Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yiqiang Wang is active.

Publication


Featured researches published by Yiqiang Wang.


Journal of Cellular Physiology | 2010

TGFβ mediated transition of corneal fibroblasts from a proinflammatory state to a profibrotic state through modulation of histone acetylation

Qingjun Zhou; Lingling Yang; Yao Wang; Mingli Qu; Peng Chen; Ye Wang; Lixin Xie; Jing Zhao; Yiqiang Wang

Corneal fibroblasts exhibit different phenotypes in different phases of corneal wound healing. In the inflammatory phase, the cells assume a proinflammatory phenotype and produce large amounts of cytokines and chemokines, but in the proliferative and remodeling phases, they adapt a profibrotic state, differentiate into myofibroblasts and increase extracellular matrix protein synthesis, secretion, and deposition. In the present study, the molecular mechanisms regulating the transition of corneal fibroblasts from the proinflammatory state to the profibrotic state were investigated. Corneal fibroblasts were treated with TGFβ, a known profibrotic and anti‐inflammatory factor in wound healing, in the absence or presence of trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor. The results revealed that TGFβ induced the profibrotic transition of corneal fibroblasts, including increased extracellular matrix synthesis, morphological changes, and assembly of actin filaments. Meanwhile, proinflammatory gene expressions of corneal fibroblasts were down‐regulated with the treatment of TGFβ, as confirmed by cDNA microarray, real time PCR and ELISA. Moreover, TSA reversed the TGFβ‐mediated transition of corneal fibroblasts from the proinflammatory state to the profibrotic state, as accompanied by histone hyperacetylations. In conclusion, TGFβ suppressed the production of proinflammatory factors and enhanced the expression of matrix remodeling genes of corneal fibroblasts in the transition from the proinflammatory state to the profibrotic state, and the dual roles of TGFβ on the phenotype regulations of corneal fibroblasts were mediated by altered histone acetylation. J. Cell. Physiol. 224:135–143, 2010


Toxicologic Pathology | 2010

Nicotine alters morphology and function of retinal pigment epithelial cells in mice.

Lingling Yang; Huaqing Gong; Ye Wang; Yao Wang; Hongmei Yin; Peng Chen; Hongwei Zhang; Yiqiang Wang

To study the effects of nicotine on retinal pigment epithelium (RPE) cells in vivo and in vitro, (Balb/c×C57Bl/6) F1 mice were given water containing 100 µg/mL nicotine for six months. Cultured fetal RPE cells were treated with nicotine or lipopolysaccharide for seventy-two hours. Expression of matrix metalloproteinase protein (MMP)2, MMP9, and VEGF was measured using Western blot. Expression of IL6 and IL8 was measured using real-time polymerase chain reaction or enzyme-linked immunosorbent assay. Electron microscopy was performed to observe the effects of nicotine on morphological changes of mice retina or cultured RPE cells, and filamentous actin in RPE cells was stained with phalloidin. Electron microscopy revealed that nicotine-treated mice showed thinner outer nuclear layers, fewer pigment granules in RPE cells, and a damaged photoreceptor–RPE interface when compared with age-control mice. When added to cultured RPE cells, nicotine induced accumulation of osmiophilic lamellated intracellular inclusions in cytoplasm, mitochondrion hypertrophy and vacuolar degeneration, and redistribution of actin in cells without affecting cell proliferation. Expression of MMP2 and MMP9 in nicotine-treated RPE cells was decreased. Nicotine-induced changes in RPE morphology and function provide insight into pathogenesis of smoking-related retinal diseases.


International Journal of Ophthalmology | 2012

Comparison of the therapeutic effects of extracts from Spirulina platensis and amnion membrane on inflammation-associated corneal neovascularization.

Lingling Yang; Qingjun Zhou; Yao Wang; Yan Gao; Yiqiang Wang

AIM To compare the therapeutic effects of polysaccharide extract from Spirulina platensis (PSP) and extract from amnion membrane (AME) on alkali burn-induced corneal neovascularization (CorNV). METHODS PSP and AME were extracted from dry powder of Spirulina platensis and human aminion membrane respectively. Murine CorNV was induced by applying 1N sodiumhydroxide (NaOH) solution directly on the mice corneas. PSP and AME extracts were administered topically on the corneas 4 times daily for 7 days. The therapy effects of PSP and AME extracts were evaluated daily using slit-lamp. At the end of the therapy, corneas were harvested for H&E staining, masson trichrome staining, immunohistochemical study, and semi-quantification reverse transcriptive PCR (RT-PCR) was utilized for measurement of inflammation-related molecules. RESULTS Topical application of PSP extract had significant therapeutic effects on CorNV that could be shown in various assays of the corneas. Compared with AME extract, PSP extract treatment was more effective in suppressing CorNV in terms of vessel length and levels of cluster of differentiation 31 (CD31) proteins or the angiogenesis related genes like vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9). PSP also inhibited inflammation more markedly by more effectively inhibiting mononuclear and polymorphonuclear cells infiltration into the corneal stroma and reducing levels of stromal cell-derived factor-1 (SDF1), tumor necrosis factor-alpha (TNFα) and macrophage inflammatory protein-3 (MIP3a). In additon, corneas of PSP group had a more regular and compact architecture of collagen with thinner corneal thickness than in the AME group. CONCLUSION Polysaccharide extract from Spirulina platensis inhibited alkali burn-induced inflammation and CorNV more effectively than AME extract at the studied doses, thus may be used for the therapy of corneal diseases involving neovascularization and inflammation.


International Journal of Ophthalmology | 2010

Differentiation of human bone marrow-derived mesenchymal stem cells into neural-like cells by co-culture with retinal pigmented epithelial cells

Lingling Yang; Qingjun Zhou; Yao Wang; Yiqiang Wang

AIM To detect the differentiation effects of retinal cells or extracts on bone marrow-derived mesenchymal stem cells (BMSC). METHODS Human fetal BMSC were previously labelled by carboxyfluorescein succinimidyl ester (CFSE), and co-cultured with retinal pigment epithelial (RPE) cells which were pre-treated with ultraviolet irradiation at a ratio of 1:1 to induce the differentiation of BMSC for up to 14 days. In some assays, a retinal extract of bovine retinal extract (BRE) was added to detect the potential effects of retinal component on the differentiation of BMSC. In addition, Neuron-specific enolase (NSE), Nestin and Glial fibrillary acidic protein (GFAP) immunostaining were performed to determine the characteristics of BMSC. RESULTS The results indicated that by co-cultured with RPE cells, fetal BMSC were differentiated into neural-like cells expressing special neuronal markers Nestin, GFAP and NSE. And the expression of these markers was obviously increased by BRE. CONCLUSION Retina derived cells and extracts can induce the differentiation of BMSC into neural-like cells.


Journal of Cellular Physiology | 2012

Role of senescent fibroblasts on alkali-induced corneal neovascularization.

Qingjun Zhou; Lingling Yang; Mingli Qu; Yao Wang; Peng Chen; Yiqiang Wang; Weiyun Shi

Cellular senescence acts as a potent regulator of tumor suppression and fibrosis limitation; however, its contribution and crosstalk with neovascularization during normal wound healing has not been examined. Here, we explored the role of senescent fibroblasts on neovascularization with a mouse model of alkali‐induced corneal wound healing. Senescent cells accumulated in corneal stroma from day 7 to 27 after alkali burn and peaked on day 14, which was consistent with the development of corneal neovascularization (CNV). In vitro and in vivo assays confirmed that the senescent cells were derived primarily from activated corneal fibroblasts. Furthermore, senescent corneal fibroblasts exhibited enhanced synthesis and secretion of extracellular matrix‐degrading enzymes (matrix metalloproteinases 2, 3, and 14 and tissue‐ and urokinase‐type plasminogen activators) and angiogenic factors (vascular endothelial growth factor) and decreased expression of anti‐angiogenic factors (pigment epithelium‐derived factor and thrombospondins), which supported the proliferation, migration, and promotion of tube formation of vascular endothelial cells. Intrastromal injection of premature senescent fibroblasts induced CNV earlier than that of normal fibroblasts, while matrix metalloproteinase inhibitors blocked the early onset of senescent cell‐induced CNV. Therefore, senescent fibroblasts promoted the alkali‐induced CNV partially via the enhanced secretion of matrix metalloproteases. J. Cell. Physiol. 227: 1148–1156, 2012.


International Journal of Ophthalmology | 2014

Serum amyloid A and pairing formyl peptide receptor 2 are expressed in corneas and involved in inflammation-mediated neovascularization

Shengwei Ren; Xia Qi; Changkai Jia; Yiqiang Wang

AIM To solidify the involvement of Saa-related pathway in corneal neovascularization (CorNV). The pathogenesis of inflammatory CorNV is not fully understood yet, and our previous study implicated that serum amyloid A (Saa) 1 (Saa1) and Saa3 were among the genes up-regulated upon CorNV induction in mice. METHODS Microarray data obtained during our profiling project on CorNV were analyzed for the genes encoding the four SAA family members (Saa1-4), six reported SAA receptors (formyl peptide receptor 2, Tlr2, Tlr4, Cd36, Scarb1, P2rx7) and seven matrix metallopeptidases (Mmp) 1a, 1b, 2, 3, 9, 10, 13 reportedly to be expressed upon SAA pathway activation. The baseline expression or changes of interested genes were further confirmed in animals with CorNV using molecular or histological methods. CorNV was induced in Balb/c and C57BL/6 mice by placing either three interrupted 10-0 sutures or a 2 mm filter paper soaked with sodium hydroxide in the central area of the cornea. At desired time points, the corneas were harvested for histology examination or for extraction of mRNA and protein. The mRNA levels of Saa1, Saa3, Fpr2, Mmp2 and Mmp3 in corneas were detected using quantitative reverse transcription-PCR, and SAA3 protein in tissues detected using immunohistochemistry or western blotting. RESULTS Microarray data analysis revealed that Saa1, Saa3, Fpr2, Mmp2, Mmp3 messengers were readily detected in normal corneas and significantly up-regulated upon CorNV induction. The changes of these five genes were confirmed with real-time PCR assay. On the contrary, other SAA members (Saa2, Saa4), other SAA receptors (Tlr2, Tlr4, Cd36, P2rx7, etc), or other Mmps (Mmp1a, Mmp1b, Mmp9, Mmp10, Mmp13) did not show consistent changes. Immunohistochemistry study and western blotting further confirmed the expression of SAA3 products in normal corneas as well as their up-regulation in corneas with CorNV. CONCLUSION SAA-FPR2 pathway composing genes were expressed in normal murine corneas and, upon inflammatory stimuli challenge to the corneas, their expressions were up-regulated, suggesting their roles in pathogenesis of CorNV. The potential usefulness of SAA-FPR2 targets in future management of CorNV-related diseases deserves investigation.


Alternative & Integrative Medicine | 2014

Phytochemical Isoliquiritigenin Inhibits Angiogenesis Ex Vivo and Corneal Neovascularization in Mice

Lingling Yang; Wenxiao He; Huihua Qu; Changkai Jia; Yao Wang; Yiqiang Wang; Dongmin Liu

Neovascularization is often involved in many diseases and there is no effective treatment for this pathological process. In searching for potential therapies for neovascularization, we screened nineteen pre-selected small molecules isolated from herbal extracts for their possible anti-angiogenic effect in vitro and in vivo. We found that isoliquiritigenin, a chalconoid compound isolated from Chinese herb medicine licorice, potently inhibited vascular endothelial cell (EC) proliferation, migration, tube -like structure formation ex vivo. Western blot analysis shows that exposure of ECs to isoliquiritigenin inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. In Matrigel plug assay, isoliquiritigenin effectively blocked fibroblast growth factor-induced in vivo angiogenesis in mice. Consistently, topical application of isoliquiritigenin significantly inhibited chemical injury-induced corneal neovascularization in mice. Collectively, these results suggest that isoliquiritigenin may be a low-cost and effective natural agent to treat angiogenesis-dependent diseases


International Journal of Ophthalmology | 2015

Herpes simplex virus-1 infection or Simian virus 40-mediated immortalization of corneal cells causes permanent translocation of NLRP3 to the nuclei.

Shu-Long Wang; Ge Zhao; Wei Zhu; Xiaomeng Dong; Ting Liu; Yuanyuan Li; Wengang Song; Yiqiang Wang

AIM To investigate into the potential involvement of pyrin containing 3 gene (NLRP3), a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of corneas against viruses. METHODS The herpes viral keratitis model was utilized in BALB/c mice with inoculation of herpes simplex virus-1 (HSV-1). Corneal tissues removed during therapy of patients with viral keratitis as well as a Simian vacuolating virus 40 (SV40)-immortalized human corneal epithelial cell line were also examined. Immunohistochemistry was used to detect NLRP3 in these subjects, focusing on their distribution in tissue or cells. Western blot was used to measure the level of NLRP3 and another two related molecules in NLPR3 inflammasome, namely caspase-1 and IL-1β. RESULTS The NLRP3 activation induced by HSV-1 infection in corneas was accompanied with redistribution of NLRP3 from the cytoplasm to the nucleus in both murine and human corneal epithelial cells. Furthermore, in the SV40-immortalized human corneal epithelial cells, NLRP3 was exclusively located in the nucleus, and treatment of the cells with high concentration of extracellular potassium (known as an inhibitor of NLRP3 activation) effectively drove NLRP3 back to the cytoplasm as reflected by both immunohistochemistry and Western blot. CONCLUSION It is proposed that herpes virus infection activates and causes redistribution of NLRP3 to nuclei. Whether this NLRP3 translocation occurs with other viral infections and in other cell types merit further study.


Current Eye Research | 2011

Retracted: Expression Profile and Regulation of Telomerase Reverse Transcriptase on Oxygen-Induced Retinal Neovascularization

Xiaojie Min; Qingjun Zhou; Dong Xg; Yiqiang Wang; Lixin Xie

RETRACTED


International Journal of Ophthalmology | 2016

The involvement of proline-rich protein Mus musculus predicted gene 4736 in ocular surface functions.

Xia Qi; Shengwei Ren; Feng Zhang; Yiqiang Wang

AIM To research the two homologous predicted proline-rich protein genes, Mus musculus predicted gene 4736 (MP4) and proline-rich protein BstNI subfamily 1 (Prb1) which were significantly upregulated in cultured corneal organs when encountering fungal pathogen preparations. This study was to confirm the expression and potential functions of these two genes in ocular surface. METHODS A Pseudomonas aeruginosa keratitis model was established in Balb/c mice. One day post infection, mRNA level of MP4 was measured using real-time polymerase chain reaction (PCR), and MP4 protein detected by immunohistochemistry (IHC) or Western blot using a customized polyclonal anti-MP4 antibody preparation. Lacrimal glands from normal mice were also subjected to IHC staining for MP4. An online bioinformatics program, BioGPS, was utilized to screen public data to determine other potential locations of MP4. RESULTS One day after keratitis induction, MP4 was upregulated in the corneas at both mRNA level as measured using real-time PCR and protein levels as measured using Western blot and IHC. BioGPS analysis of public data suggested that the MP4 gene was most abundantly expressed in the lacrimal glands, and IHC revealed that normal murine lacrimal glands were positive for MP4 staining. CONCLUSION MP4 and Prb1 are closely related with the physiology and pathological processes of the ocular surface. Considering the significance of ocular surface abnormalities like dry eye, we propose that MP4 and Prb1 contribute to homeostasis of ocular surface, and deserve more extensive functional and disease correlation studies.

Collaboration


Dive into the Yiqiang Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongmin Liu

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lingling Yang

Academy of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge