Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yisheng Pan is active.

Publication


Featured researches published by Yisheng Pan.


Inflammation | 2015

Protective Effect of 1,25-Dihydroxyvitamin D3 on Lipopolysaccharide-Induced Intestinal Epithelial Tight Junction Injury in Caco-2 Cell Monolayers

Shanwen Chen; Pengyuan Wang; Guowei Chen; Junling Zhang; Zi-yi Chen; Shuai Zuo; Yucun Liu; Yisheng Pan

Lipopolysaccharide was found to be elevated in the plasma of necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD) patients and may play an important role in the pathogenesis and propagation of these intestinal diseases. To illustrate the destructive effect of lipopolysaccharide (LPS) and to test the protective effect of 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) on LPS-induced barrier injury, an in vitro intestinal epithelia barrier model was established with Caco-2 monolayers and treated with clinically relevant concentrations (1–10 ng/ml) of LPS with or without 1,25(OH)2D3. Transepithelial electrical resistance (TEER) and FITC-Dextran 40kda (FD-40) flux were measured to reflect monolayer permeability. We found that LPS at clinically relevant concentrations increased intestinal permeability by downregulating and redistributing tight junction (TJ) proteins. 1,25(OH)2D3 added at baseline or at day 4 abrogated the destructive effect of LPS on monolayer permeability by restoring the expression and localization of TJ proteins. LPS, at clinically relevant concentrations, also downregulated the expression of vitamin D receptor (VDR); 1,25 (OH)2D3, however, could restore the expression of VDR. Our findings illustrate the mechanism underlying the destructive effect of clinically relevant concentrations of LPS on intestinal TJ barrier and provide evidence for the clinical application of vitamin D in LPS-related intestinal barrier dysfunction.


Biochemical and Biophysical Research Communications | 2015

1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells.

Shanwen Chen; Shuai Zuo; Ju Ma; Junling Zhang; Guowei Chen; Xin Wang; Yisheng Pan; Yucun Liu; Pengyuan Wang

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial-mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells.


Neoplasia | 2017

H19 Overexpression Induces Resistance to 1,25(OH)2D3 by Targeting VDR Through miR-675-5p in Colon Cancer Cells

Shanwen Chen; Dingfang Bu; Yuanyuan Ma; Guowei Chen; Lie Sun; Shuai Zuo; Tengyu Li; Yisheng Pan; Xin Wang; Yucun Liu; Pengyuan Wang

The long noncoding (lnc) RNA H19 was involved in the tumorigenesis of many types of cancer. However, the role of H19 in the tumorigenesis of colon cancer has not been fully illustrated. Recent studies suggested a potential relationship between H19 and vitamin D receptor (VDR) signaling. Considering the pivotal role of VDR signaling in the colon epithelium both physiologically and pathologically, the correlation between H19 and VDR signaling may have an important role in the development of colon cancer. In this study, the correlation between H19 and vitamin D receptor (VDR) signaling and the underlying mechanisms in colon cancer were investigated both in vitro and in vivo. The results suggested that VDR signaling was able to inhibit the expression of H19 through regulating C-Myc/Mad-1 network. H19, on the other hand, was able to inhibit the expression of VDR through micro RNA 675-5p (miR-675-5p). Furthermore, H19 overexpression induced resistance to the treatment with 1,25(OH)2D3 both in vitro and in vivo. Together, these results suggested that H19 overexpression might be one of the mechanisms underlying the development of resistance to the treatment with 1,25(OH)2D3 in the advanced stage of colon cancer.


International Journal of Colorectal Disease | 2008

The FVIIa-tissue factor complex induces the expression of MMP7 in LOVO cells in vitro

Jian-Quan Zhang; Yuan-Lian Wan; Yucun Liu; Xin Wang; Tang Jq; Tao Wu; Yisheng Pan

Background and aimsThe extracellular interactions of plasma clotting factor VIIa (FVIIa) with tissue factor (TF) on the cell surface trigger intracellular signaling events involved in multiple physiological processes. TF expression is related to the metastatic potential of tumor cells and is a significant risk factor in the development of hepatic metastases in patients with colorectal cancer. At present, it is unclear how the interaction between TF and FVIIa influences the development of metastasis in colon cancer.Materials and methodsWe used a stable LOVO cell line derived from colorectal adenocarcinoma for our model Western blot analysis, Northern blot analysis, polymerase chain reaction, and RNA inference (RNAi), and the Dual-Luciferase Reporter Assay System technology were utilized to determine if MMP7 can be up-regulated by the VIIa/TF complex.ResultsNorthern blot analysis confirmed that the plasma clotting factor FVIIa/TF complex resulted in a marked increase in MMP7 expression in a time- and dose-dependent manner via the p38 pathway in vitro. The proximal promoter of the human MMP7 gene was cloned into a luciferase reporter construction (MMP7.luc1592). Upon treatment with FVIIa, reporter activity in LOVO cells was increased by 2.5-fold. TF RNAi almost completely abolished FVIIa-mediated MMP7.luc induction. Deletion constructs from MMP7.luc1592 further defined an active promoter region.InterpretationTaken together, these data provide evidence that expression of MMP7 in colon cancer may be regulated by FVIIa and TF at the transcriptional level. MMP7 may act as a downstream mediator of FVIIa/TF signal transduction to facilitate the development of metastasis in colon cancer.


Toxicology Letters | 2015

Protective effect of 1,25-dihydroxyvitamin D3 on ethanol-induced intestinal barrier injury both in vitro and in vivo

Shanwen Chen; Yuan-yuan Ma; Shuai Zuo; Junling Zhang; Zi-yi Chen; Guowei Chen; Xin Wang; Yisheng Pan; Yucun Liu; Pengyuan Wang

Studies have suggested the role of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in protecting intestinal barrier function from injuries induced by multiple reagents. Vitamin D deficiency was reported to be associated with poor prognosis in patients with alcoholic liver disease (ALD). This study is designed to investigate the effect of 1,25(OH)2D3 on ethanol-induced intestinal barrier dysfunction and the underlying mechanisms utilizing Caco-2 cell monolayers and a mouse model with acute ethanol injury. In Caco-2 monolayers, ethanol significantly increased monolayer permeability, disrupted TJ distribution, increased phosphorylation level of MLC, and induced generation of ROS compared with controls. However, pre-treatment with 1,25(OH)2D3 greatly ameliorated the ethanol-induced barrier dysfunction, TJ disruption, phosphorylation level of MLC, and generation of ROS compared with ethanol-exposed monolayers. Mice fed with vitamin d-sufficient diet had a higher plasma level of 25(OH)D3 and were more resistant to ethanol-induced acute intestinal barrier injury compared with the vitamin d-deficient group. These results suggest that the suppression of generation of ROS and increased phosphorylation level of MLC might be one of the mechanisms underlying the protective effect of 1,25(OH)2D3 on ethanol-induced intestinal barrier injury and provide evidence for the application of vitamin D as therapeutic factors against ethanol-induced gut leakiness.


Biochemical Pharmacology | 2016

GYY4137 ameliorates intestinal barrier injury in a mouse model of endotoxemia.

Shanwen Chen; Dingfang Bu; Yuanyuan Ma; Lie Sun; Shuai Zuo; Ju Ma; Tengyu Li; Zeyang Chen; Youwen Zheng; Xin Wang; Yisheng Pan; Pengyuan Wang; Yucun Liu

Intestinal barrier injury has been reported to play a vital role in the pathogenesis of endotoxemia. This study aimed to investigate the protective effect of GYY4137, a newly synthesized H2S donor, on the intestinal barrier function in the context of endotoxemia both in vitro and in vivo. Caco-2 (a widely used human colon cancer cell line in the study of intestinal epithelial barrier function) monolayers incubated with lipopolysaccharide (LPS) or TNF-α/IFN-γ and a mouse model of endotoxemia were used in this study. The results suggested that GYY4137 significantly attenuated LPS or TNF-α/IFN-γ induced increased Caco-2 monolayer permeability. The decreased expression of TJ (tight junction) proteins induced by LPS and the altered localization of TJs induced by TNF-α/IFN-γ was significantly inhibited by GYY4137; similar results were obtained in vivo. Besides, GYY4137 promoted the clinical score and histological score of mice with endotoxemia. Increased level of TNF-α/IFN-γ in the plasma and increased apoptosis in colon epithelial cells was also attenuated by GYY4137 in mice with endotoxemia. This study indicates that GYY4137 preserves the intestinal barrier function in the context of endotoxemia via multipathways and throws light on the development of potential therapeutic approaches for endotoxemia.


Scientific Reports | 2016

Targeting HCCR expression resensitizes gastric cancer cells to chemotherapy via down-regulating the activation of STAT3.

Junling Zhang; Xiangzheng Liu; Pengyuan Wang; Guowei Chen; Yong Jiang; Shu-Kai Qiao; Xin Wang; Yisheng Pan; Yucun Liu

The human cervical cancer oncogene (HCCR) has been found to be overexpressed in a variety of human cancers. However, the level of expression of HCCR and its biological function in gastric cancer are largely unknown. In this study, we evaluated HCCR expression in several gastric cancer cell lines and in one normal gastric mucosal cell line. We established a 5-FU-resistant gastric cancer cell subline, and we evaluated its HCCR expression. HCCR expression levels were high in gastric cancer lines, and expression was significantly increased in the 5-FU-resistant cancer cell subline. HCCR expression affected cell growth by regulating apoptosis in the cancer cells, and it had a positive correlation with p-STAT3 expression. Western blot and luciferase reporter assays showed that the activation of STAT3 upregulated HCCR expression in a positive feedback loop model. In vivo and in vitro studies showed that HCCR plays an important role in the apoptosis induced by 5-FU. Our data demonstrate that HCCR is probably involved in apoptosis and cancer growth and that it functions as a p-STAT3 stimulator in a positive feedback loop model. In gastric cancer cells, HCCR confers a more aggressive phenotype and resistance to 5-FU-based chemotherapy.


Inflammation Research | 2015

Protective effect of hydrogen sulfide on TNF-α and IFN-γ-induced injury of intestinal epithelial barrier function in Caco-2 monolayers

Shanwen Chen; Shuai Zuo; Junling Zhang; Zi-yi Chen; Guowei Chen; Xin Wang; Yisheng Pan; Yucun Liu; Pengyuan Wang


Inflammatory Bowel Diseases | 2016

Effect of Long Noncoding RNA H19 Overexpression on Intestinal Barrier Function and Its Potential Role in the Pathogenesis of Ulcerative Colitis

Shanwen Chen; Pengyuan Wang; Yucun Liu; Lie Sun; Shuai Zuo; Ju Ma; Tengyu Li; Junling Zhang; Guowei Chen; Xin Wang; Qiu-ru Zhu; Youwen Zheng; Zeyang Chen; Zihao Yao; Yisheng Pan


Cancer Research | 2018

Abstract 5840: Inhibition of cystathionine-β-synthase (CBS) sensitizes colon cancer cells to 5-FU via increasing apoptosis and inhibiting cellular bioenergetics

Shanwen Chen; Pengyuan Wang; Yisheng Pan; Yucun Liu

Collaboration


Dive into the Yisheng Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge