Yisheng Wang
Zhengzhou University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yisheng Wang.
Journal of Translational Medicine | 2014
Junkui Sun; Yisheng Wang; Yuebai Li; Guoqiang Zhao
BackgroundHuman bone marrow mesenchymal stem cells (hBMSCs) are multipotent cells that can differentiate into a variety of cell types. Elevated expression of peroxisome proliferator-activated receptor-γ (PPARγ) promotes the adipogenic differentiation of hBMSCs, and reduces their osteogenic differentiation. MicroRNAs (miRNAs) have been shown to play important roles in the regulation of hBMSCs differentiation. Because bioinformatic analysis has indicated that PPARγ is a candidate target of miR-548d-5p, the aim of this study was to assess the impact of miR-548d-5p on the dexamethasone-induced adipogenic differentiation of hBMSCs.MethodsA quantitative RT-PCR (qRT-PCR) assay was used to compare miR-548d-5p expression levels in dexamethasone-induced hBMSCs and uninduced control cells. Oil red O staining, cellular triglyceride (TG) content, and the mRNA and protein levels of PPARγ and CCAAT/enhancer binding protein α (C/EBPα) were used to evaluate the adipogenic differentiation of hBMSCs. Alkaline phosphatase (ALP) activity and levels of osteocalcin (OCN) and Runx2 were used to evaluate the osteogenic potential of hBMSCs.ResultsCompared with untreated cells, miR-548d-5p expression levels were downregulated during dexamethasone-induced adipogenic differentiation of hBMSCs. In contrast to the profuse Oil Red O staining in the cytoplasm of dexamethasone + scrambled miRNA-treated cells, there was limited staining in the cytoplasm of dexamethasone + miR-548d-5p-treated cells, indicating the absence of adipocytes. Moreover, compared with scrambled miRNA-treated cells, treatment with miR-548d-5p suppressed cellular levels of PPARγ and C/EBPα mRNA and protein, and cell TG content (P < 0.05). In contrast, compared with scrambled miRNA-treated cells, cellular levels of OCN and Runx2 mRNA and protein, as well as ALP activity, were significantly higher in miR-548d-5p-treated cells (P < 0.05). Western blot and luciferase reporter assays confirmed that miR-548d-5p directly targeted the 3′-untranslated region of PPARγ.ConclusionsmiR-548d-5p is downregulated during dexamethasone-induced adipogenic differentiation of hBMSCs. By directly targeting and downregulating PPARγ, miR-548d-5p suppresses the dexamethasone-induced adipogenic differentiation of hBMSCs and enhances their osteogenic potential. Our findings suggest that miR-548d-5p has potential in the treatment of corticosteroid-induced osteonecrosis of the femoral head.
Scientific Reports | 2016
Chenxi Gu; Yan Xu; Shanfeng Zhang; Hongya Guan; Shi Song; Xiuli Wang; Yisheng Wang; Yuebai Li; Guoqiang Zhao
The imbalance between adipogenic and osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs) plays a significant role in the pathogenesis of steroid-induced osteonecrosis of the femoral head (ONFH). Several microRNAs (miRNAs) are involved in regulating adipogenesis and osteogenesis. In this study, we established a steroid-induced ONFH rat model to identify the potential relevant miRNAs. We identified 9 up-regulated and 28 down-regulated miRNAs in the ONFH rat model. Of these, miR-27a was down-regulated and negatively correlated with peroxisome proliferator-activated receptor gamma (PPARγ) and gremlin 1 (GREM1) expression. Further studies confirmed that PPARγ and GREM1 were direct targets of miRNA-27a. Additionally, adipogenic differentiation was enhanced by miR-27a down-regulation, whereas miRNA-27a up-regulation attenuated adipogenesis and promoted osteogenesis in steroid-induced rat BMSCs. Moreover, miRNA-27a up-regulation had a stronger effect on adipogenic and osteogenic differentiation in steroid-induced rat BMSCs than si-PPARγ and si-GREM1. In conclusion, we identified 37 differentially expressed miRNAs in the steroid-induced ONFH model, of which miR-27a was down-regulated. Our results showed that miR-27a up-regulation could inhibit adipogenesis and promote osteogenesis by directly targeting PPARγ and GREM1. Thus, miR-27a is likely a key regulator of adipogenesis in steroid-induced BMSCs and a potential therapeutic target for ONFH treatment.
Molecular and Cellular Biochemistry | 2014
Jinfeng Li; Yisheng Wang; Yuebai Li; Junkui Sun; Guoqiang Zhao
Studies have shown that alcohol can upregulate the expression of peroxisome proliferator-activated receptor-γ (PPARγ) gene in bone marrow mesenchymal stem cells (BMSCs). High expression of PPARγ can promote adipogenic differentiation of BMSCs, and reduce their osteogenic differentiation. Abnormal proliferation of adipocytes and fatty accumulation in osteocytes can result in high intraosseous pressure and disturbance of blood circulation in the femoral head, which induces osteonecrosis of the femoral head (ONFH). Downregulation of PPARγ is efficient in inhibiting adipogenesis and maintaining osteogenesis of BMSCs, which might potentially reduce the incidence of ONFH. Calcitonin gene-related peptide (CGRP) is a neuropeptide gene which has been closely associated with bone regeneration. In this study, we aimed to observe the effect of combined regulation of the expression of PPARγ and CGRP genes on alcohol-induced adipogenic differentiation of BMSCs. Our results demonstrated that simultaneous downregulation of PPARγ and upregulation of CGRP was efficient in suppressing adipogenic differentiation of BMSCs and promoting their osteogenic differentiation. These findings might enlighten a novel approach for the prevention of ONFH.
Connective Tissue Research | 2014
Jinfeng Li; Yuebai Li; Yisheng Wang; Ming Liu; Guoqiang Zhao
Abstract Purposes/Aim: Glucocorticoid steroids can induce expression of PPARγ gene and enhance adipogenesis by bone marrow mesenchymal stem cells (BMSCs), which may result in osteonecrosis of the femoral head. Currently, there are no medications available to prevent steroid-induced osteonecrosis. We hypothesized that siRNA targeting PPARγ gene may prevent steroid-induced adipogenesis and osteonecrosis in rabbit. The purpose of this study was to evaluate the preventive effects of siRNA targeting PPARγ gene on steroid-induced adipogenesis and osteonecrosis. Methods: Forty-eight healthy New Zealand rabbits were randomized into four groups with Group M treated with dexamethasone only, Group S with dexamethasone and a recombinant adenovirus shuttle vector carrying siRNA targeting PPARγ gene, Group Con with dexamethasone and a vector carrying irrelative sequence, and Group N with no treatment serving as control. Expressions of the PPARγ, osteocalcin and Runx2 genes, as well as histopathologic changes were evaluated. Results: The levels of PPARγ gene expression were decreased while the levels of osteocalcin and Runx2 gene expression were increased in rabbits treated with dexamethasone and recombinant adenovirus shuttle vector carrying siRNA targeting PPARγ gene (Group S), compared to rabbits treated either with dexamethasone alone (Group M) or with both dexamethasone and a vector carrying irrelative sequence (Group Con). The marrow necrosis, adipocyte hypertrophy and proliferation, diminished hematopoiesis, thinner and sparse trabeculae, and increased empty osteocyte lacunae in the femoral head were observed in Group M and Group Con rabbits. However, no such changes were seen in Group S rabbits that were treated with dexamethasone and a recombinant adenovirus shuttle vector carrying siRNA targeting PPARγ gene. Conclusion: siRNA targeting PPARγ gene can inhibit adipogenic differentiation of BMSCs and prevent steroid-induced osteonecrosis in rabbit. The inhibition of bone-marrow adipogenesis and concomitant enhancement of osteogenesis with RNAi may provide a novel approach to the prevention of steroid-induced osteonecrosis.
Journal of Cellular Physiology | 2018
Guowei Shang; Yadong Wang; Yan Xu; Shanfeng Zhang; Xiaoya Sun; Hongya Guan; Xuefeng Zhao; Yisheng Wang; Yuebai Li; Guoqiang Zhao
A growing number of long non‐coding RNAs (lncRNAs) have been found to be involved in diverse biological processes such as cell cycle regulation, embryonic development, and cell differentiation. However, limited knowledge is available concerning the underlying mechanisms of lncRNA functions. In this study, we found down‐regulation of TCONS_00041960 during adipogenic and osteogenic differentiation of glucocorticoid‐treated bone marrow mesenchymal stem cells (BMSCs). Furthermore, up‐regulation of TCONS_00041960 promoted expression of osteogenic genes Runx2, osterix, and osteocalcin, and anti‐adipogenic gene glucocorticoid‐induced leucine zipper (GILZ). Conversely, expression of adipocyte‐specific markers was decreased in the presence of over‐expressed TCONS_00041960. Mechanistically, we determined that TCONS_00041960 as a competing endogenous RNA interacted with miR‐204‐5p and miR‐125a‐3p to regulate Runx2 and GILZ, respectively. Overall, we identified a new TCONS_00041960‐miR‐204‐5p/miR‐125a‐3p‐Runx2/GILZ axis involved in regulation of adipogenic and osteogenic differentiation of glucocorticoid‐treated BMSCs.
Oncology Letters | 2018
Guowei Shang; Yang Mi; Yingwu Mei; Guanghui Wang; Yadong Wang; Xinjie Li; Yisheng Wang; Yuebai Li; Guoqiang Zhao
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression during stem cell growth, proliferation and differentiation. miRNAs are also involved in the development and progression of a number of cancer types, including osteosarcoma (OS). miR-192 is significantly downregulated in various tumors, including lung, bladder and rectal cancer. miR-192 expression is associated with the migration and invasion of OS cells. However, the expression of miR-192 and its effects on the development of OS have not been reported. In the present study, the involvement of miR-192 and its molecular mechanisms in the development of OS was investigated. The results indicate that miR-192 expression was significantly downregulated in OS tissues compared with non-tumor tissues (P<0.05). Next, a miR-192 agomir was transfected into the OS cell line MG-63 to upregulate miR-192. The effects of miR-192 overexpression were then investigated by examining cell proliferation, apoptosis, migration and invasion. Matrix metalloproteinase (MMP)-11 belongs to a family of nine or more highly homologous Zn2+-endopeptidases. It was demonstrated that the mRNA and protein expression of MMP-11 were upregulated in OS tissues compared with non-tumor tissues (P<0.05). MMP-11 was predicted by TargetScan and miRanda as a miR-192 target, which was confirmed by western blotting and dual-luciferase assays. Finally, it was demonstrated that the overexpression of miR-192 was able to downregulate MMP-11 expression and reduce proliferation, migration and invasion, and promote apoptosis in OS cells. Together, these data indicate that miR-192 may be a tumor suppressor that inhibits the progression and invasion of OS by targeting MMP-11. Therefore, miR-192 may be useful for the diagnosis and treatment of OS.
OncoTargets and Therapy | 2018
Hongya Guan; Yingwu Mei; Yang Mi; Cheng Li; Xiaoya Sun; Xuefeng Zhao; Jia Liu; Wei Cao; Yuebai Li; Yisheng Wang
Background This study was designed to research the potential function of lncRNA ANRIL in osteosarcoma (OS). Materials and methods Quantitative real-time PCR, cell counting kit-8, wound healing assay, Transwell assay, flow cytometric analysis, caspase activity analysis, and Western blot were carried out. Results ANRIL was remarkably upregulated in human OS tissues and cells, and knockdown of ANRIL significantly suppressed MG63 cell proliferation, migration, and invasion and promoted apoptosis. Moreover, our mechanistic research findings verified that ANRIL-influenced growth and apoptosis may be partly through regulation of caspase-3 and Bcl-2. Migration and invasion were influenced via ANRIL-mediated regulation of MTA1, TIMP-2, and E-cadherin. Conclusion Our finding demonstrates that ANRIL plays vital roles in OS growth and metastasis.
Journal of Cellular Physiology | 2018
Hongya Guan; Guowei Shang; Yuanbo Cui; Jiu Liu; Xiaoya Sun; Wei Cao; Yisheng Wang; Yuebai Li
A growing amount of evidence has shown that long noncoding RNAs (lncRNAs) play crucial roles in osteosarcoma (OS). However, little knowledge is available about the functional roles and molecular mechanisms of lncRNA Alu‐mediated p21 transcriptional regulator (APTR) in OS. Herein, APTR expression was demonstrated to be significantly upregulated in OS tumor tissues and four OS cell lines (including MG63, 143B, Saos‐2, and HOS) compared with the adjacent tissues and human osteoblast cell line hFOB1.19, respectively. We confirmed miR‐132‐3p to be a target for APTR, and its expression was demonstrated to be inhibited by APTR. In functional terms, knockdown of APTR and overexpression of miR‐132‐3p both, remarkably repressed human OS cell proliferation, invasion and migration, and induced apoptosis. Also, Yes‐associated protein 1 (YAP1) was determined as an inhibitory target of miR‐132‐3p. Moreover, our findings demonstrated that the repression of YAP1 protein expression and the suppression of Ki‐67, MMP9, and Bcl2 expression induced by APTR knockdown required increased miR‐132‐3p. Thus, APTR contributed to OS progression through repression of miR‐132‐3p and upregulation of YAP1 expression. Therefore, we have uncovered a novel regulatory mechanism by which the APTR/miR‐132‐3p/YAP1 axis can regulate OS progression.
Journal of Cellular Biochemistry | 2018
Xuefeng Zhao; Yan Xu; Xiaoya Sun; Yuan Ma; Yan Zhang; Yadong Wang; Hongya Guan; Zhen Jia; Yuebai Li; Yisheng Wang
MicroRNA‐17‐5p (miR‐17‐5p) and epithelial‐mesenchymal transition (EMT) have been reported to participate in the development and progression of multiple cancers. However, the relationship between the miR‐17‐5p and EMT in osteosarcoma (OS) is still poorly understood. This study was to investigate the effects of the miR‐17‐5p and its potential mechanism in regulating proliferation, apoptosis, and EMT of human OS. Quantitative real‐time PCR was used to detect the miR‐17‐5p and SRC kinase signaling inhibitor 1 (SRCIN1) messenger RNA expression in OS specimens and cell lines. After transfection with miR‐17‐5p inhibitors, proliferation, apoptosis, migration, and invasion of OS cells were assessed by using the Cell Counting Kit‐8, the annexin V‐FITC apoptosis, wound‐healing, and transwell assays. The SRCIN1 was validated as a target of the miR‐17‐5p through bioinformatics algorithms and luciferase reporter assay. Moreover, the expression of EMT markers, E‐cadherin, N‐cadherin, and Snail was identified by the Western blot analysis. MiR‐17‐5p was significantly upregulated in OS tumor samples and cell lines. It inhibited proliferation and EMT, and promoted apoptosis in OS. The SRCIN1 was identified as a direct target of the miR‐17‐5p. Silenced miR‐17‐5p could change the expression of EMT markers, such as upregulating the expression of E‐cadherin, and downregulating the expression of N‐cadherin and Snail through targeting the antioncogenic SRCIN1. These findings suggest that the miR‐17‐5p promotes cell proliferation, and EMT in human OS by directly targeting the SRCIN1, and reveal a branch of the miR‐17‐5p/SRCIN1/EMT signaling pathway involved in the progression of OS.
Ejso | 2016
J. Liu; Q. Liu; Yisheng Wang; Z. Xia; G. Zhao