Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yisheng Xu is active.

Publication


Featured researches published by Yisheng Xu.


Soft Matter | 2013

Protein-polyelectrolyte interactions

A. Basak Kayitmazer; Daniel Seeman; Burcu Baykal Minsky; Paul L. Dubin; Yisheng Xu

The interactions of proteins and polyelectrolytes lead to diverse applications in separations, delivery and wound repair, and are thus of interest to scientists in e.g. (a) glycobiology, (b) tissue engineering, (c) biosensing, and (d) pharmacology. This breadth is accompanied by an assortment of contexts and models in which polyelectrolytes are seen as (a) protein cognates assisting in complex cellular roles, (b) surrogates for the extracellular matrix, mimicking its hydration, mechanical and sequestering properties, (c) benign hosts that gently entrap, deposit and tether protein substrate specificity, and (d) selective but non-specific agents that modify protein solubility. Unsurprisingly, this literature is somewhat segregated by objectives and paradigms. We hope this review, which emphasizes publications over the last 8 years, represents and also counterbalances that divergence. An ongoing theme is the role of electrostatics, and we show how this leads to the variety of physical forms taken by protein–polyelectrolyte complexes. We present approaches towards analysis and characterization, motivated by the goal of structure–property elucidation. Such understanding should guide in applications, our third topic. We present recent developments in modeling and simulations of protein–polyelectrolyte systems. We close with a prospective on future developments in this field.


Biomacromolecules | 2011

Electrostatic selectivity in protein-nanoparticle interactions.

Kaimin Chen; Yisheng Xu; Subinoy Rana; Oscar R. Miranda; Paul L. Dubin; Vincent M. Rotello; Lianhong Sun; Xuhong Guo

The binding of bovine serum albumin (BSA) and β-lactoglobulin (BLG) to TTMA (a cationic gold nanoparticle coupled to 3,6,9,12-tetraoxatricosan-1-aminium, 23-mercapto-N,N,N-trimethyl) was studied by high-resolution turbidimetry (to observe a critical pH for binding), dynamic light scattering (to monitor particle growth), and isothermal titration calorimetry (to measure binding energetics), all as a function of pH and ionic strength. Distinctively higher affinities observed for BLG versus BSA, despite the lower pI of the latter, were explained in terms of their different charge anisotropies, namely, the negative charge patch of BLG. To confirm this effect, we studied two isoforms of BLG that differ in only two amino acids. Significantly stronger binding to BLGA could be attributed to the presence of the additional aspartates in the negative charge domain for the BLG dimer, best portrayed in DelPhi. This selectivity decreases at low ionic strength, at which both isoforms bind well below pI. Selectivity increases with ionic strength for BLG versus BSA, which binds above pI. This result points to the diminished role of long-range repulsions for binding above pI. Dynamic light scattering reveals a tendency for higher-order aggregation for TTMA-BSA at pH above the pI of BSA, due to its ability to bridge nanoparticles. In contrast, soluble BLG-TTMA complexes were stable over a range of pH because the charge anisotropy of this protein at makes it unable to bridge nanoparticles. Finally, isothermal titration calorimetry shows endoenthalpic binding for all proteins: the higher affinity of TTMA for BLGA versus BLGB comes from a difference in the dominant entropy term.


Langmuir | 2013

pH-Dependent Aggregation and Disaggregation of Native β‑Lactoglobulin in Low Salt

Yunfeng Yan; Daniel Seeman; Bingqian Zheng; Ebru Kizilay; Yisheng Xu; Paul L. Dubin

The aggregation of β-lactoglobulin (BLG) near its isoelectric point was studied as a function of ionic strength and pH. We compared the behavior of native BLG with those of its two isoforms, BLG-A and BLG-B, and with that of a protein with a very similar pI, bovine serum albumin (BSA). Rates of aggregation were obtained through a highly precise and convenient pH/turbidimetric titration that measures transmittance to ±0.05 %T. A comparison of BLG and BSA suggests that the difference between pHmax (the pH of the maximum aggregation rate) and pI is systematically related to the nature of protein charge asymmetry, as further supported by the effect of localized charge density on the dramatically different aggregation rates of the two BLG isoforms. Kinetic measurements including very short time periods show well-differentiated first and second steps. BLG was analyzed by light scattering under conditions corresponding to maxima in the first and second steps. Dynamic light scattering (DLS) was used to monitor the kinetics, and static light scattering (SLS) was used to evaluate the aggregate structure fractal dimensions at different quench points. The rate of the first step is relatively symmetrical around pHmax and is attributed to the local charges within the negative domain of the free protein. In contrast, the remarkably linear pH dependence of the second step is related to the uniform reduction in global protein charge with increasing pH below pI, accompanied by an attractive force due to surface charge fluctuations.


Langmuir | 2012

Multimerization and Aggregation of Native-State Insulin: Effect of Zinc

Yisheng Xu; Yunfeng Yan; Daniel Seeman; Lianhong Sun; Paul L. Dubin

The aggregation of insulin is complicated by the coexistence of various multimers, especially in the presence of Zn(2+). Most investigations of insulin multimerization tend to overlook aggregation kinetics, while studies of insulin aggregation generally pay little attention to multimerization. A clear understanding of the starting multimer state of insulin is necessary for the elucidation of its aggregation mechanism. In this work, the native-state aggregation of insulin as either the Zn-insulin hexamer or the Zn-free dimer was studied by turbidimetry and dynamic light scattering, at low ionic strength and pH near pI. The two states were achieved by varying the Zn(2+) content of insulin at low concentrations, in accordance with size-exclusion chromatography results and literature findings (Tantipolphan, R.; Romeijn, S.; Engelsman, J. d.; Torosantucci, R.; Rasmussen, T.; Jiskoot, W. J. Pharm. Biomed. 2010, 52, 195). The much greater aggregation rate and limiting turbidity (τ(∞)) for the Zn-insulin hexamer relative to the Zn-free dimer was explained by their different aggregation mechanisms. Sequential first-order kinetic regimes and the concentration dependence of τ(∞) for the Zn-insulin hexamer indicate a nucleation and growth mechanism, as proposed by Wang and Kurganov (Wang, K.; Kurganov, B. I. Biophys. Chem. 2003, 106, 97). The pure second-order process for the Zn-free dimer suggests isodesmic aggregation, consistent with the literature. The aggregation behavior at an intermediate Zn(2+) concentration appears to be the sum of the two processes.


RSC Advances | 2015

Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel

Weina Wang; Yisheng Xu; Ang Li; Tao Li; Miaomiao Liu; Regine von Klitzing; Christopher K. Ober; A. Basak Kayitmazer; Li Li; Xuhong Guo

To mimic the underwater adhesion of marine mussels, a bioadhesive has been prepared with a poly(acrylic acid) backbone functionalized with 30% catechol appendants. The polyelectrolyte chains can be reversibly crosslinked through metal chelation and irreversibly gelled by oxidative crosslinking. Surprisingly, the reported “poor” metal chelator Zn2+ not only imparts this injectable adhesive with superior adhesion after the formation of coacervation compared to the one chelated by a stronger metal crosslinker (e.g. Fe3+), but also generates good mechanical performance of the self-healing hydrogel after the oxidation of catechol groups with a pH trigger. Such a pH-responsive material with strong adhesion and good self-healing property at different conditions could be an ideal candidate in biomedical adhesion and tissue engineering.


Macromolecular Rapid Communications | 2015

Mussel-Inspired Photografting on Colloidal Spheres: A Generalized Self-Template Route to Stimuli-Responsive Hollow Spheres for Controlled Pesticide Release

Wenbo Sheng; Wei Li; Bin Li; Cuihua Li; Yisheng Xu; Xuhong Guo; Feng Zhou; Xin Jia

A thermo-controlled pesticide release system composed of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) thin film grafted polydopamine (PDA) (PDMAEMA-g-PDA) microcapsules is reported. SiO2 microparticles are used as a template to prepare PDA-coated SiO2 microparticles. The thermally-responsive PDMAEMA thin films are grafted on PDA surfaces using a metal-free surface-initiated photopolymerization approach without adding any photo-initiator or photosensitizer under UV light irradiation. The subsequent acid etching yields PDMAEMA-g-PDA hollow microcapsules. PDMAEMA-g-PDA microcapsules exhibit well-controlled release of avermectin (Av). The results show that the loading ability of PDMAEMA-g-PDA microcapsules of Av is up to 52.7% (w/w). The release kinetics of Av demonstrate that Av@PDMAEMA-g-PDA microcapsules exhibit temperature-controlled release performance. This work is significant for controlled release systems. This simple design is expected to be used in various applications, such as in controlled drug release and agriculture-related fields.


Biomacromolecules | 2012

Effect of heparin on protein aggregation: inhibition versus promotion.

Yisheng Xu; Daniel Seeman; Yunfeng Yan; Lianhong Sun; Jared Post; Paul L. Dubin

The effect of heparin on both native and denatured protein aggregation was investigated by turbidimetry and dynamic light scattering (DLS). Turbidimetric data show that heparin is capable of inhibiting and reversing the native aggregation of bovine serum albumin (BSA), β-lactoglobulin (BLG), and Zn-insulin at a pH near pI and at low ionic strength I; however, the results vary with regard to the range of pH, I, and protein-heparin stoichiometry required to achieve these effects. The kinetics of this process were studied to determine the mechanism by which interaction with heparin could result in inhibition or reversal of native protein aggregates. For each protein, the binding of heparin to distinctive intermediate aggregates formed at different times in the aggregation process dictates the outcome of complexation. This differential binding was explained by changes in the affinity of a given protein for heparin, partly due to the effects of protein charge anisotropy as visualized by electrostatic modeling. The heparin effect can be further extended to include inhibition of denaturing protein aggregation, as seen from the kinetics of BLG aggregation under conditions of thermally induced unfolding with and without heparin.


Macromolecules | 2016

Multi-Stimuli-Responsive Amphiphilic Assemblies through Simple Postpolymerization Modifications

Xiaochi Liu; Ding Hu; Ziwen Jiang; Jiaming Zhuang; Yisheng Xu; Xuhong Guo; S. Thayumanavan

A strategy to construct different stimuli responsive polymers from post polymerization modifications of a single polymer scaffold via thiol-disulfide exchange has been developed. Here, we report on a random copolymer that enables the design and syntheses of a series of dual or multi-stimuli responsive nanoassemblies using a simple post-polymerization modification step. The reactive functional group involves a side chain monopyridyl disulfide unit, which rapidly and quantitatively reacts with various thiols under mild conditions. Independent and concurrent incorporation of physical, chemical or biologically responsive properties have been demonstrated. We envision that this strategy may open up opportunities to simplify the synthesis of multi-functional polymers with broad implications in a variety of biological applications.


Colloids and Surfaces B: Biointerfaces | 2016

Antibacterial activity of graphene supported FeAg bimetallic nanocomposites.

Ayyaz Ahmad; Abdul Sattar Qureshi; Li Li; Jie Bao; Xin Jia; Yisheng Xu; Xuhong Guo

We report the simple one pot synthesis of iron-silver (FeAg) bimetallic nanoparticles with different compositions on graphene support. The nanoparticles are well dispersed on the graphene sheet as revealed by the TEM, XRD, and Raman spectra. The antibacterial activity of graphene-FeAg nanocomposite (NC) towards Bacillus subtilis, Escherichia coli, and Staphylococcus aureus was investigated by colony counting method. Graphene-FeAg NC demonstrates excellent antibacterial activity as compared to FeAg bimetallic without graphene. To understand the antibacterial mechanism of the NC, oxidative stress caused by reactive oxygen species (ROS) and the glutathione (GSH) oxidation were investigated in the system. It has been observed that ROS production and GSH oxidation are concentration dependent while the increase in silver content up to 50% generally enhances the ROS production while ROS decreases on further increase in silver content. Graphene loaded FeAg NC demonstrates higher GSH oxidation capacity than bare FeAg bimetallic nanocomposite. The mechanism study suggests that the antibacterial activity is probably due to membrane and oxidative stress produced by the nanocomposites. The possible antibacterial pathway mainly includes the non-ROS oxidative stress (GSH oxidation) while ROS play minor role.


Langmuir | 2014

Enhancement of enzymatic activity by magnetic spherical polyelectrolyte brushes: a potential recycling strategy for enzymes.

Yisheng Xu; Siyi Wang; Haoya Han; Kaimin Chen; Li Qin; Jun Xu; Jie Wang; Li Li; Xuhong Guo

Interactions between amyloglucosidase and magnetic spherical polyelectrolyte brushes (MSPB) were studied by turbidimetric titration, which reveals reversible and tunable behaviors of pH-dependent enzyme-SPB binding. Quantitative thermodyanmic parameters including binding affinity and stoichiometry between enzyme and SPBs were further measured by isothermal titration calorimetry (ITC). A large amount of enzyme can be loaded in MSPB without loss of MSPB stability. We demonstrated that the enzymatic activity of amyloglucosidase bound in MSPB could be greatly enhanced (catalytic reaction rate, k(bound) = 1.36k(free)) compared to free enzyme acitivity in solution. This is tremendous improvement from other carrier systems that usually lead to a significant decrease of enzymatic activity. Both the high enzyme loading capacity and the enhancement of the catalytic activity probably arise from the Coulombic interactions between the enzyme and MSPB. These findings provide a practical strategy for enhancement of enzyme activity and enzyme recycling by MSPB.

Collaboration


Dive into the Yisheng Xu's collaboration.

Top Co-Authors

Avatar

Xuhong Guo

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Li Li

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jie Wang

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Xu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Paul L. Dubin

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Kaimin Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jianjia Liu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Miaomiao Liu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaochi Liu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge