Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yishou Wang is active.

Publication


Featured researches published by Yishou Wang.


Journal of Intelligent Material Systems and Structures | 2015

Validation and evaluation of damage identification using probability-based diagnostic imaging on a stiffened composite panel

Zhanjun Wu; Kehai Liu; Yishou Wang; Yuebin Zheng

Probability-based diagnostic imaging, as one of the damage identification methods using ultrasonic guided waves, has been attracting increasing attention by researchers in the community of structural health monitoring. However, the probability-based diagnostic imaging algorithm’s influencing parameters, including the selection of certain damage index and frequency, the network of sensing paths, and the size of the effective elliptical distribution area, are empirically determined. This experience dependency limits the application of the method to identify damages in real-world practices. Therefore, it is important to clarify the influences of the above-mentioned various factors on the damage identification. However, the complexity of these factors makes it almost impossible to interpret the influencing mechanisms directly. Thus, a fusion image approach of multiple frequencies is employed to eliminate the influence of different frequencies, while a histogram-based method is proposed to evaluate the reliability of the fusion result. Meanwhile, a unit weight distribution function, considering both the network of sensing paths and the size of the effective elliptical distribution area, is presented in the analysis. Then, the influencing mechanisms are studied and discussed in detail, and a methodology is proposed to optimize the network and the scaling parameter which controls the affected zone.


Smart Materials and Structures | 2014

Design of a sensor network for structural health monitoring of a full-scale composite horizontal tail

Dongyue Gao; Yishou Wang; Zhanjun Wu; Gorgin Rahim; Shengbao Bai

The detection capability of a given structural health monitoring (SHM) system strongly depends on its sensor network placement. In order to minimize the number of sensors while maximizing the detection capability, optimal design of the PZT sensor network placement is necessary for structural health monitoring (SHM) of a full-scale composite horizontal tail. In this study, the sensor network optimization was simplified as a problem of determining the sensor array placement between stiffeners to achieve the desired the coverage rate. First, an analysis of the structural layout and load distribution of a composite horizontal tail was performed. The constraint conditions of the optimal design were presented. Then, the SHM algorithm of the composite horizontal tail under static load was proposed. Based on the given SHM algorithm, a sensor network was designed for the full-scale composite horizontal tail structure. Effective profiles of cross-stiffener paths (CRPs) and uncross-stiffener paths (URPs) were estimated by a Lamb wave propagation experiment in a multi-stiffener composite specimen. Based on the coverage rate and the redundancy requirements, a seven-sensor array-network was chosen as the optimal sensor network for each airfoil. Finally, a preliminary SHM experiment was performed on a typical composite aircraft structure component. The reliability of the SHM result for a composite horizontal tail structure under static load was validated. In the result, the red zone represented the delamination damage. The detection capability of the optimized sensor network was verified by SHM of a full-scale composite horizontal tail; all the diagnosis results were obtained in two minutes. The result showed that all the damage in the monitoring region was covered by the sensor network.


Ultrasonics | 2015

The reflection of guided waves from simple dents in pipes.

Shuyi Ma; Zhanjun Wu; Yishou Wang; Kehai Liu

Guided elastic waves have been anticipated as a rapid screening technique for pipe inspection. Dents occurring in pipes are a severe problem which may lead to the possibility of pipe failure. A study of the reflection characteristics of guided waves from dents of varying geometrical profile in pipes is investigated through experiments. Dented region is represented by a series of circumferential cross-sections and its geometric parameters are described by axial length and the maximum and minimum outer diameters. Both single and double sided dents are mechanically simulated in hollow aluminum pipes and then experimentally tested by exciting the longitudinal L(0,2) mode. A quantitative parameter, so-called deformation rate relating to the maximum and minimum outer diameters of the dents is defined to evaluate the effect of the extent of the deformation on the reflection. For both types of dents, it is shown that the reflection coefficients of the L(0,2) mode are all approximately a linear function of their respective deformation rates. Mode conversion occurs at the dents and reflections of the F(1,3) mode are identified. The results show that the amplitude of the reflected F(1,3) mode is generally higher when the dent has stronger non-axisymmetric features.


Smart Materials and Structures | 2014

Damage size characterization algorithm for active structural health monitoring using the A0 mode of Lamb waves

Rahim Gorgin; Zhanjun Wu; Dongyue Gao; Yishou Wang

In this study, a damage size characterization algorithm has been developed to continuously obtain the extent of damage, which is vital for further investigations into the remaining life or residual strength of damaged structures. This technique uses an active PZT network with pulse-echo and pitch-catch configurations. In order to facilitate the identification of scattered wave components, a dual-PZT actuation scheme was applied to generate a comparatively pure A0 mode with an enhanced energy. The damage size characterization algorithm starts by identifying the damage location. To this end, relying on temporal information of the scattered signal, a diagnostic image was constructed to highlight the most probable location of damage. Then, as wave scattering occurs from the edges of damage sites, for each sensing path the most probable location of the wave scattering source was estimated and considered as one point on the damage boundary. As a result, the location of some points on the damage boundary are estimated. Since, in practice, the captured signals are usually polluted with noise, a data processing scheme was used to separate points correctly located on the damage boundary from those related to noise. Finally, a convex hull of selected points gives the approximate shape and size of the damage. The approach was validated by defining the location, size and shape of corrosion at its earliest stage of existence. Corrosion severity was also evaluated by obtaining reflection and transmission coefficients, subject to corrosion with different depths. The obtained experimental results demonstrated the potential of the algorithm in providing detailed information about the damage, such as its location, size, shape and severity.


Sensors | 2017

Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris

Zhibin Han; Yishou Wang; Xinlin Qing

As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine.


Transactions of Nonferrous Metals Society of China | 2012

In-situ quantitative monitoring of fatigue crack using fastest time of flight diffraction method

Chaoliang Du; Yishou Wang; Dong-yue Gao; Ke-hai Liu; Xin-lin Qing

Due to the cyclic loading and longtime exposure under extreme environment conditions, fatigue cracks often generate in the aircraft metal structures, i.e. wing skin, fuselage skin, strigners, pylons. These cracks could cause severe damages to the aircraft structures. Thus the position and size monitoring of fatigue cracks in the metal structures is very important to manufacturers as well as maintenance personnel for significantly improving the safety and reliability of aircraft. Much progress has been made for crack position monitoring in the past few years. However, the crack size monitoring is still very challenging. Fastest time of flight diffraction (FTOFD) method was developed to monitor both the position and size of a crack. FTOFD method uses an integrated sensor network to activate and receive ultrasonic waves in a structure. Diffraction waves will be generated when the ultrasonic waves pass a crack. These diffraction waves are received and analyzed to get the position and size of the crack. The experiment results show that the monitored size of the simulated crack is very close to the real size of the crack, and for frequencies of 350 and 400 kHz, the monitoring errors are both smaller than 5%.


Journal of Wuhan University of Technology-materials Science Edition | 2015

In-service structural health monitoring of a full-scale composite horizontal tail

Zhanjun Wu; Dongyue Gao; Yishou Wang; Gorgin Rahim

In-service structural health monitoring (SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actuator/sensor networks to monitor delamination extension in a full-scale composite horizontal tail. The in-service SHM technology combine of damage rapid monitoring (DRM) stage and damage imaging diagnosis (DID) stage allows for real-time monitoring and long term tracking of the structural integrity of composite aircraft structures. DRM stage using spearman rank correlation coefficient was introduced to generate a damage index which can be used to monitor the trend of damage extension. The DID stage based on canonical correlation analysis aimed at intuitively highlighting structural damage regions in two-dimensional images. The DRM and DID stages were trialed by an in-service SHM experiment of CFRP T-joint. Finally, the detection capability of the in-service SHM technology was verified in the SHM experiment of a full-scale composite horizontal tail. Experimental results show that the rapid monitoring method effectively monitors the damage occurrence and extension tendency in real time; damage imaging diagnosis results are consistent with those from the failure model of the composite horizontal tail structure.


Proceedings of SPIE | 2013

A new temperature compensation method for guided wave-based structural health monitoring

Yishou Wang; Lei Qiu; Limin Gao; Shenfang Yuan; Xinlin Qing

A new temperature compensation technique combining optimal baseline selection and the filter based on Adaptive Linear Neuron Network was developed to enhance the robustness and effectiveness of guided Lamb wave-based damage detection. This paper focuses on three main issues for practically implementing the proposed method: (a) Establishment of temperature compensation standard; (b) Parameters design of compensation filter; (c) Determination of temperature gradient of baseline signals. Experiments were conducted on two stiffened composite plates to demonstrate the feasibility of proposed method under a temperature range from -40°C to 80°C for compensating temperature effects. Results showed that a reasonable temperature step for providing good temperature compensation can be up to 20°C in a baseline dataset.


Sensors | 2018

High Strain Survivability of Piezoceramics by Optimal Bonding Adhesive Design

Hu Sun; Yishou Wang; Xinlin Qing; Zhanjun Wu

As one of the most common transducers used in structural health monitoring (SHM), piezoceramic sensors can play an important role in both damage detection and impact monitoring. However, the low tensile strain survivability of piezoceramics resulting from the material nature significantly limits their application on SHM in the aerospace industry. This paper proposes a novel approach to greatly improve the strain survivability of piezoceramics by optimal design of the adhesive used to bond them to the host structure. Theoretical model for determining the strain transfer coefficient through bonded adhesive from the host structure to piezoceramic is first established. Finite element analysis is then utilized to study the parameters of adhesive, including thickness and shear modulus. Experiments are finally conducted to validate the proposed method, and results show the piezoceramic sensors still work well when they are bonded on the host structures with tensile strain up to 4000 με by using the optimal adhesive.


Sensors | 2018

A Flexible Capacitive Pressure Sensor Based on Ionic Liquid

Xiaofeng Yang; Yishou Wang; Xinlin Qing

A flexible microfluidic super-capacitive pressure sensor is developed to measure the surface pressure of a complex structure. The innovative sensor contains a filter paper filled with ionic liquid, and coated with two indium tin oxide polyethylene terephthalate (ITO-PET) films on the top and bottom, respectively. When external pressure is applied on the top ITO-PET film of the sensor mounted on the surface of an aircraft, the capacitance between the two ITO-PET films will change because of the deformation of the top ITO-PET film. The external pressure will be determined based on the change of the capacitance. Compared to the traditional pressure sensor, the developed sensor provides a high sensitivity of up to 178.5 nF/KPa and rapid dynamic responses for pressure measurement. Meanwhile, experiments are also conducted to study the influence of the thickness of the sensing film, sensing area, temperature, and humidity.

Collaboration


Dive into the Yishou Wang's collaboration.

Top Co-Authors

Avatar

Zhanjun Wu

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dongyue Gao

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kehai Liu

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rahim Gorgin

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gorgin Rahim

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shuyi Ma

Dalian University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge